Current Challenges in Evaluating National Health Systems’ Response to Technogenic Emergencies

封面

如何引用文章

全文:

详细

The industrial development is associated not only with economic growth but also by technogenic risks that threaten human health and the environment. Historical incidents such as the Bhopal Disaster (1984), Chernobyl Accident (1986), Fukushima Daiichi Accident (2011), Flint Water Crisis (2014), and many other technogenic accidents and disasters dramatically demonstrate the impact of existing threats to society and healthcare systems. The aim of the study was to identify key challenges and current approaches to evaluate national health systems’ responses to technogenic emergencies. The study analyzed scientific publications from the NCBI, PubMed, and Elibrary databases published between 2000 and 2024. These publications underwent terminological analysis using the VOSviewer software and were peer-reviewed. Based on an analysis of the most relevant publications concerning healthcare system responses to technogenic emergencies, five key areas were identified. These areas integrate resources from healthcare facilities, management systems, and technological innovations. The study highlights the significance of an integrated approach in preparing healthcare systems for technogenic emergencies. It provides a systematiс review of measures focused on improving the effectiveness of response, including simulating disaster scenarios, conducting surveys among staff and victims, raising public awareness, establishing psychological support systems, developing volunteer services, and promoting cooperation with public organizations.

作者简介

Sergey Orlov

N.A. Semashko National Research Institute of Public Health; National Medical Research Centre for Therapy and Preventive Medicine of the Ministry of Health of Russia

编辑信件的主要联系方式.
Email: orlovsergio@mail.ru
ORCID iD: 0000-0002-8749-8504
SPIN 代码: 4955-1482

MD, Cand. Sci. (Medicine)

俄罗斯联邦, 12-1, Vorontsovo Pole str., Moscow, 105064; Moscow

参考

  1. Broughton E. The Bhopal disaster and its aftermath: a review. Environ Health. 2005;4(1):6. doi: 10.1186/1476-069X-4-6
  2. Sharma DC. Bhopal: 20 years on. Lancet. 2005;365(9454):111–112. doi: 10.1016/S0140-6736(05)17722-8
  3. Valković V. Radioactivity in the Environment. Elsevier Science; 2000: 377–487. eBook ISBN: 9780080540245 doi: 10.1016/B978-044482954-2.50009-5
  4. Ruckart PZ, Ettinger AS, Hanna-Attisha M, et al. The Flint Water Crisis: A Coordinated Public Health Emergency Response and Recovery Initiative. J Public Health Manag Pract. 2019;25(Suppl 1):S84–S90. doi: 10.1097/PHH.0000000000000871
  5. McGeoghegan D, Whaley S, Binks K, et al. Mortality and cancer registration experience of the Sellafield workers known to have been involved in the 1957 Windscale accident: 50 year follow-up. J Radiol Prot. 2010;30(3):407–431. doi: 10.1088/0952-4746/30/3/001
  6. Akleyev AV, Krestinina LY, Degteva MO, Tolstykh EI. Consequences of the radiation accident at the Mayak production association in 1957 (the ‘Kyshtym Accident’). J Radiol Prot. 2017;37(3):R19–R42. doi: 10.1088/1361-6498/aa7f8d
  7. Aliyu AS, Evangeliou N, Mousseau TA, et al. An overview of current knowledge concerning the health and environmental consequences of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Environ Int. 2015;85:213–228. doi: 10.1016/j.envint.2015.09.020
  8. Chan EY, Wang Z, Mark CK, Da Liu S. Industrial accidents in China: risk reduction and response. Lancet. 2015;386(10002):1421–1422. doi: 10.1016/S0140-6736(15)00424-9
  9. Aliakbari F, Hammad K, Bahrami M, Aein F. Ethical and legal challenges associated with disaster nursing. Nurs Ethics. 2015;22(4):493–503. doi: 10.1177/0969733014534877
  10. Gastaldi S, Horlait M. Health Care Organizations’ Interoperability during Multi-Organizational Disaster Management: A Scoping Review. Prehosp Disaster Med. 2022;37(3):401–408. doi: 10.1017/S1049023X22000516
  11. Treat KN, Williams JM, Furbee PM, et al. Hospital preparedness for weapons of mass destruction incidents: an initial assessment. Ann Emerg Med. 2001;38(5):562–565. doi: 10.1067/mem.2001.118009
  12. Boer VM. State authorities in response to natural and man-made emergencies. Lex. Jus. Civitas. 2021;(1(29)):43–46. EDN: YNLPMH
  13. Subbarao I, Bond WF, Johnson C, et al. Using innovative simulation modalities for civilian-based, chemical, biological, radiological, nuclear, and explosive training in the acute management of terrorist victims: A pilot study. Prehosp Disaster Med. 2006;21(4):272Ц275. doi: 10.1017/s1049023x00003824
  14. Coleman CN, Sullivan JM, Bader JL, et al. Public health and medical preparedness for a nuclear detonation: the nuclear incident medical enterprise. Health Phys. 2015;108(2):149–160. doi: 10.1097/HP.0000000000000249
  15. Kazantsev SYa, Krasilnikov VI. First medical assistance to suffer in a technological catastrophe of accidents and natural disasters. Actual problems of medicine and biology. 2020;(1):7–10. EDN: RAWFTQ
  16. Gowing JR, Walker KN, Elmer SL, Cummings EA. Disaster Preparedness among Health Professionals and Support Staff: What is Effective? An Integrative Literature Review. Prehosp Disaster Med. 2017;32(3):321–328. doi: 10.1017/S1049023X1700019X
  17. Kirsch TD, Lee CJ, King DB, et al. Validation of Opportunities to Strengthen the National Disaster Medical System: The Military-Civilian NDMS Interoperability Study Quantitative Step. Health Secur. 2023;21(4):310–318. doi: 10.1089/hs.2023.0051
  18. Peng M, Xiao T, Carter B, et al. Effectiveness and Cost-Effectiveness of Mental Health Interventions Delivered by Frontline Health Care Workers in Emergency Health Services: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2022;19(23):15847. doi: 10.3390/ijerph192315847
  19. Abdullabekov RN, Fedorchuk VE, Minnikova TV. Mobile medical complexes in Russia. Medical Technologies. Assessment and Choice. 2021;43(3):45–52. doi: 10.17116/medtech20214303145 EDN: JZQWOP
  20. Laksham KB. Unmanned aerial vehicle (drones) in public health: A SWOT analysis. J Family Med Prim Care. 2019;8(2):342–346. doi: 10.4103/jfmpc.jfmpc_413_18
  21. Levanov VM, Mamonova EYu, Perevedentsev OV. Possibilities of application of telemedicine technologies at carrying out exercises on liquidation of medical consequences of emergency situations on remote industrial objects. Russian journal of telemedicine and e-health. 2019;5(1):17–24. doi: 10.29188/2542-2413-2019-5-1-17-24 EDN: DHYJSA
  22. Lee CJ, Kimball MM, Deussing EC, Kirsch TD. Use of Information Technology Systems for Regional Health Care Information-Sharing and Coordination During Large-Scale Medical Surge Events. Disaster Med Public Health Prep. 2023;18:e1. doi: 10.1017/dmp.2023.218
  23. Grebenyuk AN, Lisina EA, Lisin PL, Starkov AV. Medical technical devices for medical evacuation of wounded and injured in emergency situations. Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2020;(1):21–35. doi: 10.25016/2541-7487-2020-0-1-21-35 EDN: HDYIAT
  24. Artyukhin VV, Arefyeva EV, Vereskun AV, et al. Risk management of man-made disasters and natural disasters (manual for managers of organizations). The monograph. Faleev MI, ed. Moscow: All-Russian Research Institute for Civil Defense and Emergencies of the Russian Emergencies Ministry; 2016. 270 р. EDN: XXUJBD
  25. Nazarov VB, Gladkikh VD, Boyarintsev VV, et al. Current issues of forming backlogs of antidote therapy means to eliminate medical and sanitary consequences of emergency situations. Toxicological review. 2011;(6(111)):33–37. EDN: TQAWOX
  26. Sidorov DA, Grebenyuk AN, Golubenko RA, Miroshnichenko YuV. Modern approaches to creation of medicines reserves for liquidation of consequences of chemical emergencies. Bulletin of the Russian Military Medical Academy. 2015;(3(51)):267–272. EDN: VSTVJV
  27. Rasheed H, Usman M, Ahmed W, et al. A Shift From Logistic Software to Service Model: A Case Study of New Service-Driven-Software for Management of Emergency Supplies During Disasters and Emergency Conditions by WHO. Front Pharmacol. 2019;10:473. doi: 10.3389/fphar.2019.00473
  28. Uiba VV, Nazarov VB, Gladkikh VD, ed. Conceptual approaches to the development of the antidote system in the Russian Federation. Moscow: Federal Medical and Biological Agency of Russia; 2013. 304 р. (In Russ.) ISBN: 978-5-94822-059-8
  29. Bobrov AF. Prevention of technological emergency situations: information technology to develop criteria for anthropogenic risks estimation. Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2019;(2):5–16. doi: 10.25016/2541-7487-2019-0-2-05-16 EDN: RDRKWV
  30. Faleev MI, Gorbunov SV. Monitoring and Forecasting of Emergency Situations as Component Part of the Emergency Risk Management Framework. Issues of Risk Analysis. 2018;15(6):8–16. doi: 10.32686/1812-5220-2018-15-8-16 EDN: YQZLAT
  31. Voronov AV, Baldin SYu, Voronov VI, et al. Current pharmaceutical logistics of medical immunobiologicals in Russia. Farmatsiya. 2015;7:20–23. EDN: UNXNPP
  32. Jiang-Ning L, Xian-Liang S, An-Qiang H, et al. Forecasting emergency medicine reserve demand with a novel decomposition-ensemble methodology. Complex Intell Systems. 2023;9(3):2285–2295. doi: 10.1007/s40747-021-00289-x
  33. Buchakova MA, Kosorotov AP. Coordination of the activities of the management bodies of the state emergency prevention and response system. Safety issues in the aftermath of emergencies. 2015;(1–1(4)):64–68. EDN: VLCRET
  34. Mahmudov AA. Application of modern systems for public notification in emergency situations. Ekonomika i sotsium. 2024;10–2(125):767–772. EDN: QVKDCV
  35. Baranova NN, Goncharov SF. Current State of the Problem of Organizing and Conducting Medical Evacuation of Victims in Emergencies. Meditsina Katastrof = Disaster Medicine. 2020;(4):57–65. doi: 10.33266/2070-1004-2020-4-57-65 EDN: HPDDLJ
  36. Moskvichev VV, Nicheporchuk VV, Potapov VP, et al. Information Support of Monitoring and Development Risks for Social, Natural and Technogenic Systems. Issues of risk analysis. 2018;15(2):22–33. EDN: XNSIWD
  37. Tilavaldiev BT, Abdullaev ZD. Information and communication control technologies under emergency situations. Universum: technical sciences. 2021;(11-1(92)):31–33. doi: 10.32743/UniTech.2021.92.11.12541 EDN: EQOVQA
  38. Afanasiev DS, Bardakova EA, Bystryakov D.S. Analitical review sensors of volatiles for the internet of things. Informatsionnye tekhnolodii i telekommunikatsii. 2016;4(4):1–12. EDN: YLNEOX
  39. Nicheporchuk VV, Nozhenkov AI. Technology integration in the integrated emergency monitoring system. Educational Resources and Technologies. 2016;(2(14)):281–287. EDN: TVFKTL
  40. Nagata T, Kimura Y, Ishii M. Use of a geographic information system (GIS) in the medical response to the Fukushima nuclear disaster in Japan. Prehosp Disaster Med. 2012;27(2):213–215. doi: 10.1017/S1049023X1200060X
  41. Chen Y, Song G, Yang F, et al. Risk assessment and hierarchical risk management of enterprises in chemical industrial parks based on catastrophe theory. Int J Environ Res Public Health. 2012;9(12):4386–4402. doi: 10.3390/ijerph9124386
  42. Hemming D, Macneill K. Use of meteorological data in biosecurity. Emerg Top Life Sci. 2020;4(5):497–511. doi: 10.1042/ETLS20200078
  43. Umyvakin VM, Kurolap SA, Matviec DA, Shvec AV. The aggregated medico-environmental risk in the system of socio-hygienic monitoring assessment. Vozdushno-kosmicheskiye sily. Teoriya i praktika. 2017;3(3):105–112. EDN: YNHPMF
  44. Wang J, Fu G, Yan M. Investigation and Analysis of a Hazardous Chemical Accident in the Process Industry: Triggers, Roots, and Lessons Learned. Processes. 2020;8(4):477. doi: 10.3390/pr8040477
  45. Lenert LA, Kirsh D, Griswold WG, et al. Design and evaluation of a wireless electronic health records system for field care in mass casualty settings. J Am Med Inform Assoc. 2011;18(6):842–852. doi: 10.1136/amiajnl-2011-000229
  46. Watherston J, Watson J, Bruce D, et al. An in-field evaluation of rapid DNA instruments for disaster victim identification. Int J Legal Med. 2022;136(2):493–499. doi: 10.1007/s00414-021-02748-z
  47. Aleksanin SS, Rybnikov VYu, Evdokimov VI, et al. Methodological Aspects of Creating Mobile Medical Teams at Russian Emercom for Mitigating Consequences of Emergency Situations. Ekologiya cheloveka [Human Ecology]. 2017;(11):3–9. doi: 10.33396/1728-0869-2017-11-3-9 EDN: ZSKCGX
  48. Goncharov SF, Bystrov MV, Baranova NN, et al. Mobile Medical Formations of Service for Disaster Medicine of Ministry of Health of Russian Federation. Disaster Medicine. 2019;(3(107)):5–11. doi: 10.33266/2070-1004-2019-3-5-11 EDN: TKNYIJ
  49. Baranova NN, Goncharov SF. Medical evacuation at liquidation of consequences of emergencies: routing, criteria of quality. Emergency medical care. 2019;20(4):4–13. doi: 10.24884/2072-6716-2019-20-4-4-13 EDN: BIBTWW
  50. Goncharov SF. Innovative technologies in system of medical support of population affected in emergency situations. Disaster Medicine. 2011;(3(75)):5–10. EDN: OEYXNL
  51. Shoigu YuS. Organization of the activities of the psychological service of the Ministry of Emergency Situations of Russia. National Psychological Journal. 2012;(1(7)):131–133. EDN: OPPFZZ
  52. Gumenyuk SA, Aleksanin SS, Yarygin NV. Evaluation of the Efficiency of Work and Prospects of Sanitary Aviation Development in Megapolic Environment on the Example of Moscow City. Disaster Medicine. 2022;(1):71–77. doi: 10.33266/2070-1004-2022-1-71-77 EDN: PYFNVH
  53. Margus C, Hertelendy A, Tao Y, et al. United States Federal Emergency Management Agency regional clustering by disaster exposure: a new paradigm for disaster response. Nat Hazards (Dordr). 2023;116(3):3427–3445. doi: 10.1007/s11069-023-05817-1
  54. Marlow R, Singleton S, Campeau D, et al. The evolution of healthcare disaster preparedness and response training at the FEMA Center for Domestic Preparedness. Am J Disaster Med. 2019;14(1):5–8. doi: 10.5055/ajdm.2019.0310
  55. Zhong S, Clark M, Hou XY, et al. Progress and challenges of disaster health management in China: a scoping review. Glob Health Action. 2014;7:24986. doi: 10.3402/gha.v7.24986
  56. Zhang JJ, Wang TB, Fan D, et al. Medical Response to the Tianjin Explosions: Lessons Learned. Disaster Med Public Health Prep. 2018;12(3): 411–414. doi: 10.1017/dmp.2017.64
  57. Homma M. Development of the Japanese National Disaster Medical System and Experiences during the Great East Japan Earthquake. Yonago Acta Med. 2015;58(2):53–61. PMID: 26306054
  58. Yokokura Y. Japan Earthquake 2011 and Fukushima Nuclear Accident: Experience and physicians and veterinarians collaboration to recover. Japan Med Assoc J. 2016;59(1):3–9. PMID: 27738577
  59. Hecker N, Domres BD. The German emergency and disaster medicine and management system-history and present. Chin J Traumatol. 2018;21(2):64–72. doi: 10.1016/j.cjtee.2017.09.003

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Semantic network of linguistic connections of key terms and concepts characterizing the impact of man-made threats on the healthcare system.

下载 (702KB)

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».