Circular RNAs — a modern perspective on the molecular mechanisms of neurologic diseases in humans and prospects for therapeutic agents
- Authors: Shabanov P.D.1, Vashchenko V.I.1, Savelieva L.P.1, Romashova Y.E.1
-
Affiliations:
- Kirov Military Medical Academy
- Issue: Vol 21, No 2 (2023)
- Pages: 95-133
- Section: Reviews
- URL: https://bakhtiniada.ru/RCF/article/view/146559
- DOI: https://doi.org/10.17816/RCF334925
- ID: 146559
Cite item
Abstract
In mammals, the brain exhibits significantly higher expression levels of various noncoding RNAs (ncRNAs) compared to other organs. Among these, circular RNAs (circRNAs) have recently emerged as a distinct class of ncRNAs. CircRNAs are formed by back-splicing and fusion of exons, introns, or both, resulting in covalently closed loops. Abundant in the brain, circRNAs levels increase during development and persist into adulthood. The functional significance and mechanisms of circRNA action are subjects of ongoing search, with indications that they regulate the transcription of host genes and sequestration of miRNAs and RNA binding proteins. Some circRNAs have also shown potential for translation, giving rise to peptides. In a healthy brain, circRNA expression and abundance are carefully regulated spatiotemporally. However, altered expression of circRNAs is associated with several disorders, including brain tumor growth and acute and chronic neurodegenerative disorders. This is believed to be through their impact on mechanisms such as angiogenesis, neuronal plasticity, autophagy, apoptosis, and inflammation. The unique properties of circRNAs make them promising molecular biomarkers, especially in the context of neurodegenerative diseases. This review provides a comprehensive overview of circRNAs, focusing on their role in the pathogenesis of major neurodegenerative disorders, namely, Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, schizophrenia, and amyotrophic lateral sclerosis (ALS). Additionally, it discusses the potential utility of circRNAs in biomarker discovery for these debilitating conditions.
Full Text
##article.viewOnOriginalSite##About the authors
Petr D. Shabanov
Kirov Military Medical Academy
Author for correspondence.
Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-code: 8974-7477
Dr. Sci. (Med.), professor and head of the S.V. Anichkov Department of Neuropharmacology
Russian Federation, Saint PetersburgVladimir I. Vashchenko
Kirov Military Medical Academy
Email: vladimir-vaschenko@yandex.ru
Dr. Sci. (Biol.), leading research associate, Centre of Blood and Tissues
Russian Federation, Saint PetersburgL. P. Savelieva
Kirov Military Medical Academy
Email: lidalab@rambler.ru
head of the clinical laboratory, Centre of Blood and Tissues
Russian Federation, Saint PetersburgYuliya E. Romashova
Kirov Military Medical Academy
Email: pdshabanov@mail.ru
ORCID iD: 0000-0002-5771-0789
SPIN-code: 3921-7090
сhief, Centre of Blood and Tissues
Russian Federation, Saint PetersburgReferences
- Afanasieva OI, Ezhov MV, Pokrovsky SN. Antisense oligonucleotides and therapeutical monoclonal antibodies as a basement for novel biological lipidlowering drugs. Russian Journal of Cardiology. 2018;23(8): 99–109. (In Russ.) doi: 10.15829/1560-4071-2018-8-99-109
- Bozhkova ED, Balandina ОV, Konovalov АА. Autism spectrum disorders: state-of-the-art (Review). Modern Technologies in Medicine. 2020;12(2):111–120. (In Russ.) doi: 10.17691/stm2020.12.2.14
- Boyko AN, Gusev EI. Advances in multiple sclerosis research (Review). The Doctor. 2012;(5):9–15. (In Russ.)
- Vasenina EЕ, Veryugina NI, Levin OS. Modern concepts of diagnosis and treatment frontotemporal dementia. Sovremennaya terapiya v psikhiatrii i nevrologii. 2015;(3):26–34. (In Russ.)
- Vashchenko VI, Chuklovin AB, Shabanov PD. Circular RNAs in eukaryotic cells: origin, characteristics, mechanisms of molecular functioning in human malignant diseases. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(4):335–384. (In Russ.) doi: 10.17816/RCF204335-384
- Gulyaev SA. Specificity of biochemical mechanisms of excitation formation in symptomatic epilepsy (A review). Russian Journal of Child Neurology. 2011;6(1):31–38. (In Russ.)
- Ershova MV, Akhmadullina DR, Fedotova EYu, Illarioshkin SN. Current concept of multiple system atrophy. Aktual’nye voprosy nevrologii. 2018;(4):3–12. (In Russ.) doi: 10.24411/2071-5315-2018-12051
- Zuev VA. Immunology theory of Alzheimer disease pathogenesis: facts and hypothesis. Modern Problems of Science and Education. 2019;(4):28961. (In Russ.) doi: 10.17513/spno.28961
- Karlov VA. Evolution of LR. Zenkov. Epilepsy as a model for studying the CNS function. Epilepsy and paroxysmal conditions. 2018;10(3):79–86. (In Russ.)
- Klimenko LL, Skalny AV, Turna AA, et al. Metal-ligand homeostasis in etiopathogenesis of Alzheimer’s disease (Review). Microelements in Medicine. 2016;17(4):3–10. (In Russ.) doi: 10.19112/2413-6174-2016-17-4-3-10
- Klyushnikov SA. Huntington’s disease. L.O. Badalyan Neurological Journal. 2020;1(3):139–158. (In Russ.) doi: 10.17816/2686-8997-2020-1-3-139-158
- Krot KV. Optimizatsiya lekarstvennogo obespecheniya bol’nykh shizofreniei: regional’nye farmakoehpidemiologicheskie i farmakoehkonomicheskie aspekty [dissertation]. Khabarovsk, 2016. 186 p. (In Russ.)
- Mikhel DV. Bipolar disorder: An epidemic or a consequence of the medicalization of society? Vestnik of Saint Petersburg University. Sociology. 2018;11(1):51–65. (In Russ.) doi: 10.21638/spbu12.201.105
- Morozova AYu, Zubkov EA, Zorkina YaA, et al. Genetic aspects of schizophrenia. The Korsakov’s Journal of Neurology and Psychiatry. 2017;(6):126–132. (In Russ.) doi: 10.17116/jnevro201711761126-132
- Pal’tsev MA, Polyakova VO, Lin’kova NS, et al. Molekulyarno-kletochnye mekhanizmy bolezni Al’tsgeimera. Molecular medicine. 2016;14(6):3–10. (In Russ.)
- Panyukova AS. Statistics of mental disorders in the Russian Federation. SKIF. Voprosy studencheskoi nauki. 2019;(11): 589–595. (In Russ.)
- Pereverzev AP, Romanovskii RR, Shatalova NA, Ostroumova OD. Inflammaging: inflammation and oxidative stress as a cause of aging and cognitive decline. Medical Council. 2021;(4):48–58. (In Russ.) doi: 10.21518/2079-701X-2021-4-48-58
- Prozherina J. Modern insight into the problem of schizophrenia. REMEDIUM. 2018;(1–2):49–54. (In Russ.) doi: 10.21518/1561-5936-2018-1-2-49-54
- Razdorskaya VV, Voskresenskaya ON, Yudina GK. Parkinson’s disease in Russia: prevalence and incidence. Saratov Journal of Medical Scientific Research. 2016;12(3):379–384. (In Russ.)
- Stolyarov ID, editor. Rasseyannyi skleroz. Monoklonal’naya terapiya. Moscow: Meditsina-Inform, 2019. 240 p. (In Russ.)
- Simonova VV. Sovremennye vozmozhnosti issledovaniya kletochnykh i molekulyarnykh mekhanizmov bolezni Parkinsona. New technologies. 2018;(1):9–13. (In Russ.) doi: 10.24411/2071-5315-2018-12014
- Skvortsova VI, Levitskii GN, Zakharova MN. Nevrologiya: natsional’noe rukovodstvo. Kratkoe izdanie. Ed. by E.I. Guseva, A.N. Konovalova, A.B. Gekht. Moscow: GEOTAR-Meditsina, 2018. 688 p. (In Russ.)
- Stefanova NA, Kolosova NG. Evolution of understanding of Alzheimer’s disease pathogenesis. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(1):6–13. (In Russ.)
- Stoychev KR, Ivanov K, Kojuharov ChV, et al. Antypsychotics in schizophrenia treatment — Literature review. Human. Sport. Medicine. 2016;16(3):25–36. (In Russ.) doi: 10.14529/hsm160304
- Tappakhov AA, PopovaTE, NikolaevaTYa, et al. Epidemiology of Parkinson’s disease in the world and Russia. The Transbaikalian Bulletin. 2016;(4):151–159. (In Russ.)
- Shabanov PD, Orlov FA, Tutaeva VV, et al. Lekarstvennye sredstva, primenyaemye v gematologii: klassifikatsiya i opisanie preparatov. In: Rukavitsyn OA, editor. Ratsional’naya farmakoterapiya v gematologii. Moscow: Litterra, 2021. P. 549–782. (In Russ.)
- Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53. DOI: 10.1038 /nrn1824
- Ahmad R, Sportelli V, Ziller M, et al. Tracing early neurodevelopment in schizophrenia with induced pluripotent stem cells. Cells. 2018;7(9):140. doi: 10.3390/cells7090140
- Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. 2013;9:617–628. doi: 10.1038/nrneurol.2013.203
- Ansel A, Rosenzweig JP, Zisman PD, et al. Variation in gene expression in autism spectrum disorders: an extensive review of transcriptomic studies. Front Neurosci. 2016;10:601. doi: 10.3389/fnins.2016.00601
- Armakola M, Higgins MJ, Figley MD, et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet. 2012;44(12):1302–1309. doi: 10.1038/ng.2434
- Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66. doi: 10.1016/j.molcel.2014.08.019
- Bai Y, Zhang Y, Han B, et al. Circular RNA DLGAP4 Ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci. 2018;38(1):32–50. doi: 10.1523/JNEUROSCI.1348-17.2017
- Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 2015;61(1):221–230. doi: 10.1373/clinchem.2014.230433
- Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurology. 2019;27(1):27–42. doi: 10.1111/ene.14108
- Banote RK, Akel S, Zelano J. Blood biomarkers in epilepsy. Acta Neurologica Scandinavica. 2022;146(4):362–368. doi: 10.1111/ane.13616
- Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386(10004):1672–1682. doi: 10.1016/S0140-6736(15)00461-4
- Bartels T, Choi JG, Selkoe JS. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature. 2011;477(7362):107–110. doi: 10.1038/nature10324
- Bassett AS, Collins EJ, Nuttall SE, Honer WG. Positive and negative symptoms in families with schizophrenia. Schizophr Res. 1993;11(1):9–19. doi: 10.1016/0920-9964(93)90033-F
- Bateman RJ, Aisen PS, De Strooper, et al. Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s. Alzheimers Res Ther. 2011;3(1):1. doi: 10.1186/alzrt59
- Bates GP, Dorsey R, Gusella JF, et al. Huntington disease. Nat Rev Dis Primers. 2015;1:15005. doi: 10.1038/nrdp.2015.5
- Berge-Seidl V, Pihlstrøm L, Maple-Grødem J, et al. The GBA variant E326K is associated with Parkinson’s disease and explains a genome-wide association signal. Neurosci Lett. 2017;658:48–52. doi: 10.1016/j.neulet.2017.08.040
- Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: double trouble. Neuron. 2020;107(2):234–256. doi: 10.1016/j.neuron.2020.06.002
- Boldrini M, Santiago AN, Hen R, et al. Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacol. 2013;38(6):1068–1077. doi: 10.1038/npp.2013.5
- Bonelli RM, et al. Gentington. Circ Res. 2001;117(10):884–890. doi: 10.1002/mpr.106
- Brisinda D, Sorbo AR, Di Giacopo R, et al. Cardiovascular autonomic nervous system evaluation in Parkinson disease and multiple system atrophy. J Neurol Sci. 2014;336(1–2):197–202. doi: 10.1016/j.jns.2013.10.039
- Burré J, Sharma M, Tsetsenis T, et al. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329(5999):1663–1667. doi: 10.1126/science.1195227
- Burré J, Sharma M, Südhof TC. Alpha-synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. PNAS USA. 2014;111(40):E4274–E4283. doi: 10.1073/pnas.1416598111
- Cacquevel M, Aeschbach L, Houacine J, Fraering PC. Alzheimer’s disease-linked mutations in presenilin-1 result in a drastic loss of activity in purified γ-secretase complexes. PLoS One. 2012;7(4): e35133. doi: 10.1371/journal.pone.0035133
- Caprio FZ, Sorond FA. Cerebrovascular disease: Primary and secondary stroke prevention. Med Clin North Am. 2019;103(2):295–308. doi: 10.1016/j.mcna.2018.10.001
- Cardamone G, Paraboschi EM, Solda G, et al. Not only cancer: the long non-coding RNA MALAT1 affects the repertoire of alternatively spliced transcripts and circular RNAs in multiple sclerosis. Hum Mol Genet. 2018;28(9):1414–1428. doi: 10.1093/hmg/ddy438
- Cardno AG, Owen MJ. Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr Bull. 2014;40(3):504–515. doi: 10.1093/schbul/sbu016
- Cervera-Carles L, Dols-Icardo O, Molina-Porcel L, et al. Assessing circular RNAs in Alzheimer’s disease and frontotemporal lobar degeneration. Neurobiol Aging. 2020;92:7–11. doi: 10.1016/j.neurobiolaging.2020.03.017
- Charlson F, Van Ommeren M, Flaxman A, et al. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet. 2019;394(10194): 240–248. doi: 10.1016/S0140-6736(19)30934-1
- Chen BJ, Huang S, Janitz M. Changes in circular RNA expression patterns during human foetal brain development. Genomics. 2019;111(4):753–758. doi: 10.1016/j.ygeno.2018.04.015
- Chen BJ, Mills JD, Takenaka K, et al. Characterization of circular RNAs landscape in multiple system atrophy brain. J Neurochem. 2016;139(3):485–496. doi: 10.1111/jnc.13752
- Chen M, Lai X, Wang X, et al. Long non-coding RNAs and circular RNAs: Insights into microglia and astrocyte mediated neurological diseases. Front Mol Neurosci. 2021;14:745066. doi: 10.3389/fnmol.2021.745066
- Chen RHC, Wislet-Gendebien S, Samuel F, et al. α-synuclein membrane association is regulated by the Rab3a recycling machinery and presynaptic activity. J Biol Chem. 2013;288(11):7438–7449. doi: 10.1074/jbc.M112.439497
- Chen W, Schuman E. Circular RNAs in brain and other tissues: a functional enigma. Trends Neurosci. 2016;39(9):597–604. doi: 10.1016/j.tins.2016.06.006
- Chen Y-J, Chen C-Y, Mai T-L, et al. Genome-wide, integrative analysis of circular RNA dysregulation and the corresponding circular RNA-microRNA-mRNA regulatory axes in autism. Genome Res. 2020;30(3):375–391. doi: 10.1101/gr.255463.119
- Choi B-K, Choi M-G, Kim J-Y, et al. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. PNAS USA. 2013;110(10):4087–4092. doi: 10.1073/pnas.1218424110
- Corey DR. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat Neurosci. 2017;20(4):497–499. doi: 10.1038/nn.4508
- Cortés-López M, Miura P. Emerging functions of circular RNAs. Yale J Biol Med. 2016;89(4):527–537.
- Crump C, Sundquist K, Winkleby MA, et al. Comorbidities and mortality in bipolar disorder: a Swedish national cohort study. JAMA Psychiatry. 2013;70(9):931–939. doi: 10.1001/jamapsychiatry.2013.1394
- Cui X, Niu W, Kong L, et al. hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in Major depressive disorder. Biomark Med. 2016;10(9):943–952. doi: 10.2217/bmm-2016-0130
- D’Anca M, Buccellato FR, Fenoglio C, Galimberti D. Circular RNAs: emblematic players of neurogenesis and neurodegeneration. Int J Mol Sci. 2022;23(8):4134. doi: 10.3390/ijms23084134
- Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol. 2014;10(6):337–348. doi: 10.1038/nrneurol.2014.78
- Dharap A, Bowen K, Place R, et al. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 2009;29(4):675–687. doi: 10.1038/jcbfm.2008.157
- Dharap A, Nakka VP, Vemuganti R. Altered expression of PIWI RNA in the rat brain after transient focal ischemia. Stroke. 2011;42(4):1105–1109. doi: 10.1161/STROKEAHA.110.598391
- Dharap A, Nakka VP, Vemuganti R. Effect of focal ischemia on long noncoding RNAs. Stroke. 2012;43(10):2800–2802. doi: 10.1161/STROKEAHA.112.669465
- Dharap A, Pokrzywa C, Murali S, et al. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One. 2013;8(11): e79467. doi: 10.1371/journal.pone.0079467
- Dharap A, Pokrzywa C, Vemuganti R. Increased binding of stroke-induced long non-coding RNAs to the transcriptional coexpressors Sin3A and coREST. ASN Neuro. 2013;5(4):283–289. doi: 10.1042/AN20130029
- Dorostgou Z, Yadegar N, Dorostgou Z, et al. Novel insights into the role of circular RNAs in Parkinson disease: An emerging renaissance in the management of neurodegenerative diseases. J Neurosci Res. 2022;100(9):1775–1790. doi: 10.1002/jnr.25094
- Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol. 2009;10(12):1252–1259. doi: 10.1038/ni.1798
- Du Y, Yu Y, Hu Y, et al. Genome-wide, integrative analysis implicates exosome-derived microrna dysregulation in schizophrenia. Schizophr Bull. 2019;45(6):1257–1266. doi: 10.1093/schbul/sby191
- Duan X, Li L, Gan J, et al. Identification and functional аnalysis of circular RNAs induced in rats by middle cerebral artery occlusion. Gen. 2019;701:139–145. doi: 10.1016/j.gene.2019.03.053
- Dube U, Del-Aguila JL, Li Z, et al. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci. 2019;22(11):1903–1912. doi: 10.1038/s41593-019-0501-5
- Dutta R, Trapp BD. Relapsing and progressive forms of multiple sclerosis: insights from pathology. Сurr Opin Neurol. 2014;27(3): 271–278. doi: 10.1097/WCO.0000000000000094
- Ebbesen KK, Kjems J, Hansen TB. Circular RNAs: Identification, biogenesis and function. Biochim Biophys Acta. 2016;1859(1): 163–168. doi: 10.1016/j.bbagrm.2015.07.007
- Emamzadeh FN. Alpha-synuclein structure, functions, and interactions. J Res Med Sci. 2016;21:29. doi: 10.4103/1735–1995.181989
- Emmanouilidou E, Minakaki G, Keramioti MV, et al. GABA transmission via ATP-dependent K+ channels regulates α-synuclein secretion in mouse striatum. Brain. 2016;139(3):871–890. doi: 10.1093/brain/awv403
- Enuka Y, Lauriola M, Feldman ME, et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44(3):1370–1383. doi: 10.1093/nar/gkv1367
- Errichelli L, Dini Modigliani S, Laneve P, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 2017;8:14741. doi: 10.1038/ncomms14741
- Fang Y, Wang X, Li W, et al. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. Int J Mol Med. 2018;42(4):1865–1874. doi: 10.3892/ijmm.2018.3783
- Fеnоgliо С, Scarpini E, Galimberti D. Epigenetic regulatory modifications in genetic and sporadic frontotemporal dementia. Expert Rev Neuroth. 2018;18(6):469–475. doi: 10.1080/14737175.2018.1481389
- Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: A phase 2, openlabel, dose-escalation study. Lancet. 2016;388(10063):3017–3026. DOI: 10.1016 / S0140-6736(16)31408-8
- Fu Y, He W, Zhou C, et al. Bioinformatics analysis of circRNA expression and construction of “circRNA-miRNA-mRNA” competing endogenous RNAs networks in bipolar disorder patients. Front Genet. 2021;12:718976. doi: 10.3389/fgene.2021.718976
- Gao FB, Richter JD, Cleveland DW. Rethinking unconventional translation in neurodegeneration. Cell. 2017;171(5):994–1000. doi: 10.1016/j.cell.2017.10.042
- GBD2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1789–1858. doi: 10.1016/S0140-6736(18)32279-7
- Geng X, Lou H, Wang J, et al. α-synuclein binds the K (ATP) channel at insulin-secretory granules and inhibits insulin secretion. Am J Physiol Endocrinol Metab. 2011;300(2):E276–E286. doi: 10.1152/ajpendo.00262.2010
- Ghafouri-Fard S, Badrlou E, Tahori M, et al. A Comprehensive review on the role of non-coding rnas in the pathophysiology of bipolar disorder. Mol Sci. 2022;22(10):5156. doi: 10.3390/ijms22105156
- Gokool A, Anwar F, Voineagu I. The landscape of circular RNA expression in the human brain. Biol Psychiatry. 2020;87(3):294–304. doi: 10.1016/j.biopsych.2019.07.029
- Gonda X, Petschner P, Eszlari N, et al. Genetic variants in major depressive disorder: from pathophysiology to therapy. Pharmacol Therapeut. 2019;194:22–43. doi: 10.1016/j.pharmthera.2018.09.002
- Greenway MJ, Andersen PM, Russ C, et al. ANG mutations segregate with familial and “sporadic” amyotrophic lateral sclerosis. Nat Genet. 2006;38(4):411–413. doi: 10.1038/ng1742
- Grove J, Ripke S, Als TD, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51(3):431–444. doi: 10.1038/s41588-019-0344-8
- Gruner H, Cortes-Lopez M, Cooper DA, et al. CircRNA accumulation in the aging mouse brain. Sci Rep. 2016;6:38907. doi: 10.1038/srep38907
- Haeusler AR, Donnelly CJ, Rothstein JD. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat Rev Neurosci. 2016;17(6):383–395. doi: 10.1038/nrn.2016.38
- Han B, Zhang Y, Zhang Y, et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy. 2018;14(7):1164–1184. doi: 10.1080/15548627.2018.1458173
- Hanan M, Soreq H, Kadener S. CircRNAs in the brain. RNA Biol. 2017;14(8):1028–1034. doi: 10.1080/15476286.2016.1255398
- Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441): 384–388. doi: 10.1038/nature11993
- Harciarek M, Cosentino S. Language, executive function and social cognition in the diagnosis of frontotemporal dementia syndromes. Int Rev Psychiatry. 2013;25(2):178–196. doi: 10.3109/09540261.2013.763340
- Hayes JF, Miles J, Walters K, et al. A systematic review and meta-analysis of premature mortality in bipolar affective disorder. Acta Psychiatr Scand. 2015;131(6):417–425. doi: 10.1111/acps.12408
- Henley SMD, Wild EJ, Hobbs NZ, et al. Whole-brain atrophy as a measure of progression in premanifest and early Huntington’s disease. Mov Disord. 2009;24(6):932–936. doi: 10.1002/mds.22485
- Hofmann JW, Seeley WW, Huang EJ. RNA binding proteins and the pathogenesis of frontotemporal lobar degeneration. Ann Rev Pathol. 2019;14:469–495. doi: 10.1146/annurev-pathmechdis-012418-012955
- Holdt LM, Kohlmaier A, Teupser D. Circular RNAs as therapeutic agents and targets. Front Physiol. 2018;9:1262. doi: 10.3389/fphys.2018.01262
- Huang J-L, Xu Z-H, Yang S-M, et al. Identification of differentially expressed profiles of Alzheimer’s disease Associated Circular RNAs in a Panax notoginseng saponins-treated Alzheimer’s disease mouse model. Comput Struct Biotechnol J. 2018;16:523–531. doi: 10.1016/j.csbj.2018.10.010
- Huang R, Zhang Y, Bai Y, et al. N6-methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors. Biol Psych. 2020;88(5):392–404. doi: 10.1016/j.biopsych.2020.02.018
- Huang Y, Wang Y, Wang H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psych. 2019;6(3):211–224. doi: 10.1016/S2215-0366(18)30511-X
- Huang Z-K, Yao F-Y, Xu J-Q, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from active tuberculosis patients. Cell Physiol Biochem. 2018;45(3):1230–1240. doi: 10.1159/000487454
- Idda ML, Munk R, Abdelmohsen K, Gorospe M. Noncoding RNAs in Alzheimer’s disease. Wiley Interdiscip Rev RNA. 2018;9(2): e1463. doi: 10.1002/wrna.1463
- Iparraguirre L, Alberro A, Hansen TB, et al. Profiling of plasma extracellular vesicle transcriptome reveals that circRNAs are prevalent and differ between multiple sclerosis patients and healthy controls. Biomedicines. 2021;9(12):1850. doi: 10.3390/biomedicines9121850
- Jiang L, Li H, Fan Z, et al. Circular RNA expression profiles in neonatal rats following hypoxic-ischemic brain damage. Int J Mol Med. 2019;43(4):1699–1708. doi: 10.3892/ijmm.2019.4111
- Jiang Y-J, Cao S-Q, Gao L-B, et al. Circular ribonucleic acid expression profile in mouse cortex after traumatic brain injury. J Neurotrauma. 2019;36(7):1018–1028. doi: 10.1089/neu.2018.5647
- Jin H, Kanthasamy A, Ghosh A, et al. α-synuclein negatively regulates protein kinase Cd expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity. J Neurosci. 2011;31(6):2035–2051. doi: 10.1523/JNEUROSCI.5634-10.2011
- Junn E, Lee K-W, Jeong BS, et al. Repression of alpha-synuclein expression and toxicity by microRNA-7. PNAS USA. 2009;106(31):13052–13057. doi: 10.1073/pnas.0906277106
- Karch CM, Jeng AT, Nowotny P, et al. Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease. PLoS One. 2012;7(11): e50976. doi: 10.1371/journal.pone.0050976
- Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of luxturna (and Zolgensma and Glybera): Where are we, and how did we get here? Ann Rev Virol. 2019;6(1):601–621. doi: 10.1146/annurev-virology-092818-015530
- Kim T, Mehta SL, Morris-Blanco KC, et al. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing alpha-synuclein. Sci Signal. 2018;11(560): eaat4285. doi: 10.1126/scisignal.aat4285.
- Kim TD, Paik SR, Yang CH, Kim J. Structural changes in alpha-synuclein affect its chaperone-like activity in vitro. Protein Sci. 2000;9(12):2489–2496. doi: 10.1110/ps.9.12.2489
- Knupp D, Miura P. CircRNA accumulation: A new hallmark of aging? Mech Ageing Dev. 2018;173:71–79. doi: 10.1016/j.mad.2018.05.001
- Koníčková D, Menšíková K, Tučková L, et al. Biomarkers of neurodegenerative diseases: biology, taxonomy, clinical relevance, and current research status. Biomedicines. 2022;10(7):1760. doi: 10.3390/biomedicines10071760
- Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74(6):1031–1044. doi: 10.1016/j.neuron.2012.05.009
- Kraus TFJ, Haider M, Spanner J, et al. Altered long noncoding RNA expression precedes the course of Parkinson’s disease — a preliminary report. Mol Neurobiol. 2017;54(4):2869–2877. doi: 10.1007/s12035-016-9854-x
- Kumar L, Shamsuzzama, Jadiya P, et al. Functional characterization of novel circular RNA molecule, circzip-2 and its synthesizing gene zip-2 in C. elegans model of Parkinson’s disease. Mol Neurobiol. 2018;55(8):6914–6926. doi: 10.1007/s12035-018-0903-5
- Kume K, Iwama H, Deguchi K, et al. Serum microRNA expression profiling in patients with multiple system atrophy. Mol Med Rep. 2018;17(1):852–860. doi: 10.3892/mmr.2017.7995
- Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–1208. doi: 10.1126/science.1166066
- Lagier-Tourenne C, Polymenidou M, Hutt KR, et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci. 2012;15(11):1488–1497. doi: 10.1038/nn.3230
- Lambert J-C, Grenier-Boley B, Harold D, et al. Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer’s disease. Mol Psychiatry. 2013;18(4):461–470. doi: 10.1038/mp.2012.14
- Lasda E, Parker R. Circular RNAs Co-Precipitate with extracellular vesicles: A possible mechanism for circRNA clearance. PLoS ONE. 2016;11(2): e0148407. doi: 10.1371/journal.pone.0148407
- Latchoumycandane C, Anantharam V, Kitazawa M, et al. Protein kinase Cdelta is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther. 2005;313(1):46–55. doi: 10.1124/jpet.104.078469
- Lee S, Mankhong S, Kang J-H. Extracellular vesicle as a source of Alzheimer ‘s biomarkers: Opportunities and challenges. Int J Mol Sci. 2019;20(7):1728. doi: 10.3390/ijms20071728
- Lee S-Y, Lu R-B, Wang L-J, et al. Serum miRNA as a possible biomarker in the diagnosis of bipolar II disorder. Sci Rep. 2020;10(1):1131. doi: 10.1038/s41598-020-58195-0
- Li H, Li K, Lai W, et al. Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta. 2018;480:17–25. doi: 10.1016/j.cca.2018.01.026
- Li J, Shi Q, Wang Q, et al. Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction. Neurosci Lett. 2019;701: 146–153. doi: 10.1016/j.neulet.2019.02.032
- Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–136. doi: 10.1016/j.cca.2015.02.018
- Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981–984. doi: 10.1038/cr.2015.82
- Li Z, Liu S, Li X, et al. Circular RNA in schizophrenia and depression. Front Psychiatry. 2020;11:392. doi: 10.3389/fpsyt.2020.00392
- Liao F, Zhu L, Yang J, et al. Whole transcriptome sequencing identified CircRNA Profiles and the related networks in schizophrenia. J Mol Neurosci. 2022;72:1622–1635. doi: 10.1007/s12031-022-02013-x
- Li J, Sun D, Pu W, et al. Circular RNAs in cancer: Biogenesis, function, and clinical significance. Trends Cancer. 2020;6(4):319–336. doi: 10.1016/j.trecan.2020.01.012
- Lipp A, Sandroni P, Ahlskog JE, et al. Prospective differentiation of multiple system atrophy from Parcinson disease with and without autonomic failure. Аrch Neurol. 2009;66(6):742–750. doi: 10.1001/archneurol.2009.71
- Liu C, Zhang C, Yang J, et al. Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget. 2017;8(49):86535–86547. doi: 10.18632/oncotarget.21238
- Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–95. doi: 10.1038/nchembio.1432
- Liu Q, Li Q, Zhang R, et al. circ-Pank1 promotes dopaminergic neuron neurodegeneration through modulating miR-7a-5p/α-syn pathway in Parkinson’s disease. Cell Death Disease. 2022;13(5):477. doi: 10.1038/s41419-022-04934-2
- Liu S, Zhang F, Shugart YY, et al. The early growth response protein 1-miR-30a-5p-neurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Transl Psychiatry. 2017;7(1): e998. doi: 10.1038/tp.2016.268
- Lukiw WJ. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Gen. 2013;4:307. doi: 10.3389/fgene.2013.00307
- Maass PG, Glažar P, Memczak S, et al. A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl). 2017;95(11):1179–1189. doi: 10.1007/s00109-017-1582-9
- MacDonald ME, Ambrose CM, Duyao MP, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–983. doi: 10.1016/0092-8674(93)90585-E
- Mackenzie IRA, Bigio EH, Ince PG, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007;61(5):427–434. doi: 10.1002/ana.21147
- Mackenzie IR, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 2010;9(10):995–1007. doi: 10.1016/S1474-4422(10)70195-2
- Mahmoudi E, Fitzsimmons C, Geaghan MP, et al. Circular RNA biogenesis is decreased in postmortem cortical gray matter in schizophrenia and may alter the bioavailability of associated miRNA. Neuropsychopharmacology. 2019;44(6):1043–1054. doi: 10.1038/s41386-019-0348-1
- Mahmoudi E, Green MJ, Cairns MJ. Dysregulation of circRNA expression in the peripheral blood of individuals with schizophrenia and bipolar disorder. J Mol Med (Berl). 2021;99(7):981–991. doi: 10.1007/s00109-021-02070-6
- Malhi GS, Mann JJ. Depression. Lancet. 2018;392(10161): 2299–2312. doi: 10.1016/S0140-6736(18)31948-2
- Majidinia M, Mihanfar A, Rahbarghazi R, et al. The roles of non-coding RNAs in Parkinson’s disease. Mol Biol Rep. 2016;43(11): 1193–1204. doi: 10.1007/s11033-016-4054-3
- Marfil-Marin E, Santamaría-Olmedo M, PerezGrovas-Saltijeral A, et al. circRNA regulates dopaminergic synapse, MAPK, and long-term depression pathways in Huntington disease. Mol Neurobiol. 2021;58(12):6222–6231. doi: 10.1007/s12035-021-02536-1
- Marques TM, Kuiperij HB, Bruinsma IB, et al. MicroRNAs in cerebrospinal fluid as potential biomarkers for Parkinson’s disease and multiple system atrophy. Mol Neurobiol. 2017;54(19):7736–7745. doi: 10.1007/s12035-016-0253-0
- Martinez J, Moeller I, Erdjument-Bromage H, et al. Parkinson’s disease-associated alpha-synuclein is a calmodulin substrate. J Biol Chem. 2003;278(19):17379–17387. doi: 10.1074/jbc.M209020200
- Mathis S, Le Masson G. RNA-targeted therapies and amyotrophic lateral sclerosis. Biomedicines. 2018;6(1):9. doi: 10.3390/biomedicines6010009
- McIntyre RS, Berk M, Briezke E, et al. Bipolar disorders. Lancet. 2020;396(10265):1841–1856. doi: 10.1016/SO140-6736(20)31544-0
- Meade RM, Fairlie DP, Mason JM. Alpha-synuclein structure and Parkinson’s disease — lessons and emerging principles. Mol Neurodegeneration. 2019;14(1):29. doi: 10.1186/s13024-019-0329-1
- Mehta SL, Dempsey RJ, Vemuganti R. Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol. 2020;186:101746. doi: 10.1016/j.pneurobio.2020.101746
- Mehta SL, Kim T, Vemuganti R. Long noncoding RNA FosDT promotes ischemic brain Injury by Interacting with REST-associated chromatin-modifying proteins. J Neurosci. 2015;35(50):16443–16449. doi: 10.1523/JNEUROSCI.2943–15.2015
- Mehta SL, Manhas N, Raghubir R. Моlecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54(1):34–66. doi: 10.1016/j.brainresrev.2006.11.003
- Mehta SL, Pandi G, Vemuganti R. Circular RNA expression profiles alter significantly in mouse brain after transient focal ischemia. Stroke. 2017;48(9):2541–2548. doi: 10.1161/STROKEAHA.117.017469
- Meissner L, Gallozzi M, Balbi M, et al. Temporal profile of MicroRNA expression in contused cortex after traumatic brain injury in mice. J Neurotrauma. 2016;33(8):713–720. doi: 10.1089/neu.2015.4077
- Xiao M-S, Ai Y, Wilusz JE. Biogenesis and functions of circular RNAs come into focus. Trends Cell Biol. 2019;30(3):226–240. doi: 10.1016/j.tcb.2019.12.004
- Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS ONE. 2015;10(10): e0141214. doi: 10.1371/journal.pone.0141214
- Mi Z, Zhongqiang C, Caiyun J, et al. Circular RNA detection methods: A minireview. Talanta. 2022;238(Pt 2):123066. doi: 10.1016/j.talanta.2021.123066
- Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: A phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12(5):435–442. doi: 10.1016/S1474-4422(13)70061-9
- Miller SJ, Campbell CE, Jimenez-Corea HA, et al. Neuroglial senescence, α-synucleinopathy, and the therapeutic potential of senolytics in Parkinson’s disease. Front Neurosci. 2022;16:824191. doi: 10.3389/fnins.2022.824191
- Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ. 2022;29(3):481–491. doi: 10.1038/s41418-022-00948-7
- Mo D, Li X, Raabe CA. The role of Aβ circRNA in Alzheimer’s disease: alternative mechanism of Aβ biogenesis from Aβ circRNA translation. bioRxiv. 2020;260968. doi: 10.1101/260968
- Mori K, Weng S-M, Arzberger T, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013;339(6125):1335–1338. doi: 10.1126/science.1232927
- Nedoluzhko A, Gruzdeva N, Sharko F, et al. The biomarker and therapeutic potential of circular RNAs in schizophrenia. Cells. 2020;9(10):2238. doi: 10.3390/cells9102238
- Neil EE, Bisaccia EK. Nusinersen: A novel antisense oligonucleotide for the treatment of spinal muscular atrophy. J Pediatr Pharmacol Ther. 2019;24(3):194–203. doi: 10.5863/1551-6776-24.3.194
- Nguyen LD, Chau RK, Kricheewsky AM. Smal molecule drugs targeting non-coding RNAs as treatments for Alzheimers disease and related dementias. Genes. 2021;12(12):2005. doi: 10.3390/genes12122005
- Ostrerova N, Petrucelli L, Farrer M, et al. Alpha-synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci. 1999;19(14):5782–5791. doi: 10.1523/JNEUROSCI.19-14-05782.1999
- Ouyang Q, Wu J, Jiang Z, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem. 2017;42(2):651–659. doi: 10.1159/000477883
- Paim LR, Schreiber R, de Rossi G, et al. Circulating microRNAs, vascular risk, and physical activity in spinal cord-injured subjects. J Neurotrauma. 2019;36(6):845–852. doi: 10.1089/neu.2018.5880
- Pandi G, Nakka VP, Dharap A, et al. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One. 2013;8(3): e58039. doi: 10.1371/journal.pone.0058039
- Park C, Rosenblat JD, Brietzke E, et al. Stress, epigenetics and depression: a systematic review. Neurosci Biobehav Rev. 2019;102:139–152. doi: 10.1016/j.neubiorev.2019.04.010
- Park SM, Jung HY, Kim TD, et al. Distinct roles of the N-terminal-binding domain and the C-terminal-solubilizing domain of alpha-Synuclein, a molecular chaperone. Biol Chem. 2002;277(32): 28512–28520. doi: 10.1074/jbc.M111971200
- Peng XM, Tehranian R, Dietrich P, et al. Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci. 2005;118(15): 3523–3530. doi: 10.1242/jcs.02481
- Petkovic S, Muller S. Synthesis and engineering of circular RNAs. In: C. Dieterich, A. Papantonis editors. Circular RNAs. Methods in Molecular Biology. Vol. 1724. New York: Humana Press, 2018. P. 167–180. doi: 10.1007/978-1-4939-7562-4_14
- Parkinson J. An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci. 2002;14(2):223–236. doi: 10.1176/jnp.14.2.223
- Piwecka M, Glazar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357(6357):eaam8526. doi: 10.1126/science.aam8526
- Pressman PS, Miller BL. Diagnosis and management of behavioral variant frontotemporal dementia. Biol Psychiatry. 2014;75(7):574–581. doi: 10.1016/j.biopsych.2013.11.006
- Prusiner SB, Woerman AL, Mordes DA, et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. PNAS USA. 2015;112(38):E5308–E5317. doi: 10.1073/pnas.1514475112
- Qian H, Kang X, Hu J, et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature. 2020;582(7813):550–556. doi: 10.1038/s41586-020-2388-4
- Quarrell OW, Nance MA, Nopoulos P, et al. Managing juvenile Huntington’s disease. Neurodegener Dis Manag. 2013;3(3):nmt.13.18. doi: 10.2217/nmt.13.18
- Qin C, Liu CB, Yang DG, et al. Circular rna expression alteration and bioinformatics analysis in rats after traumatic spinal cord injury. Front Mol Neuroscience. 2018;11:497. doi: 10.3389/fnmol.2018.00497
- Rаdеmakers R, Hutton М. The genetics of frontotemporal lobar degeneration. Curr Neurol Neurosci Rep. 2007;7(5):434–442. doi: 10.1007/s11910-007-0067-6
- Ravnik-Glavač M, Glavač D. Circulating RNAs as potential biomarkers in amyotrophic lateral sclerosis. Int J Mol Sci. 2020;21(5):1714. doi: 10.3390/ijms21051714
- Redell JB, Moore AN, Ward NH, et al. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma. 2010;27(12):2147–2156. doi: 10.1089/neu.2010.1481
- Rodriguez-Araujo G, Nakagami H, Hayashi H, et al. Alpha-synuclein elicits glucose uptake and utilization in adipocytes through the Gab1/PI3K/Akt transduction pathway. Cell Mol Life Sci. 2013;70(6):1123–1133. doi: 10.1007/s00018-012-1198-8
- Rodriguez-Araujo G, Nakagami H, Takami Y, et al. Low alpha-synuclein levels in the blood are associated with insulin resistance. Sci Rep. 2015;5(1):12081. doi: 10.1038/srep12081
- Roy S, Kanda M, Nomura S, et al. Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer. Mol Cancer. 2022;21(1):42. doi: 10.1186/s12943-022-01527-7
- Rybak-Wolf A, Plass M. RNA dynamics in Alzheimer’s disease. Molecules. 2021;26(17):5113. doi: 10.3390/molecules26175113
- Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–885. doi: 10.1016/j.molcel.2015.03.027
- Ruipérez V, Darios F, Davletov B. Alpha-synuclein, lipids and Parkinson’s disease. Prog Lipid Res. 2010;49(4):420–428. doi: 10.1016/j.plipres.2010.05.004
- Sabirzhanov B, Stoica BA, Zhao Z, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23(4):654–668. doi: 10.1038/cdd.2015.132
- Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9:e1003777. doi: 10.1371/journal.pgen.1003777
- Satterstrom FK, Kosmicki JA, Wang J, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180(3):568–584. e523. doi: 10.1016/j.cell.2019.12.036
- Schafferer S, Khurana R, Refolo V, et al. Regulatory network precede motor symptoms in a mouse model of multiple system atrophy: Clinical implications. PLoS One. 2016;11(3):e0150705. doi: 10.1371/journal.pone.0150705
- Schultz SK, Andreasen NC. Schizophrenia. Lancet. 1999;353(9162):1425–1430. doi: 10.1016/S0140-6736(98)07549-7
- Shang Y, Huang EJ. Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res. 2016;1647:65–78. doi: 10.1016/j.brainres.2016.03.036
- Shao L, Jiang G-T, Yang X-L, et al. Silencing of circIgf1r plays a protective role in neuronal injury via regulating astrocyte polarization during epilepsy. FASEB J. 2021;35(2): e21330. doi: 10.1096/fj.202001737RR
- Sharmа А, Lyashchenkо АK, Lu L, et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Communun. 2016;7:10465. doi: 10.1038/ncomms10465
- Sharma SK, Chorell E, Steneberg P, et al. Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner. Sci Rep. 2015;5(1):12531. doi: 10.1038/srep12531
- Shi Y, Song R, Wang Z, et al. Potential clinical value of circular RNAs as peripheral biomarkers for the diagnosis and treatment of major depressive disorder. EBioMedicine. 2021;66:103337. doi: 10.1016/j.ebiom.2021;66:103337
- Shi Z, Chen T, Yao Q, et al. The circular RNA ciRS-7 promotes APP and BACE1 degradation in an NF-kappaB-dependent мanner. Febs J. 2017;284(7):1096–1109. doi: 10.1111/febs.14045
- Singh M, Dwibedy SLL, Biswal SR, et al. Circular RNA: A novel and potential regulator in pathophysiology of schizophrenia. Metab Brain Dis. 2022;37(5):1309–1316. doi: 10.1007/s11011-022-00978-7
- Snowden JS, Harris JM, Thompson JC, et al. Semantic dementia and the left and right temporal lobes. Cortex. 2018;107:188–203. doi: 10.1016/j.cortex.2017.08.024
- Sierksma A, Escott-Price V, De Strooper B. Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science. 2020;370(6512):61–66. doi: 10.1126/science.abb8575
- Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–150. doi: 10.1038/nrneurol.2017.188
- Szabo L, Morey R, Palpant NJ, et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 2015;16:126. doi: 10.1186/s13059-015-0690-5
- Tan G, Wang L, Liu Y, et al. The alterations of circular RNA expression in plasma exosomes from patients with schizophrenia. J Cell Physiol. 2021;236(1):458–467. doi: 10.1002/jcp.29873
- Tang M, Lv Y. The role of N6-methyladenosine modified circular RNA in pathophysiological processes. Int J Biol Sci. 2021;17(9): 2262–2277. doi: 10.7150/ijbs.60131
- Venø MT, Hansen TB, Venø ST, et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 2015;16:245. doi: 10.1186/s13059-015-0801-3
- Verheijen BM, Pasterkamp RJ. Commentary: FUS affects circular RNA expression in murine embryonic stem cell-derived моtor neurons. Front Mol Neurosci. 2017;10:412. doi: 10.3389/fnmol.2017.00412
- Vijiaratnam N, Simuni T, Bandmann O, et al. Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol. 2021;20(7):559–572. doi: 10.1016/S1474-4422(21)00061-2
- Visanji NP, Brooks PL, Hazrati LN, Lang AE. The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathol Commun. 2013;1:2. doi: 10.1186/2051-5960-1-2
- Wang H, Li Z, Gao J, Liao Q. Circular RNA circPTK2 regulates oxygen-glucose deprivation-activated microglia-induced hippocampal neuronal apoptosis via miR-29b-SOCS-1-JAK2/STAT3-IL-1β signaling. Int J Biol Macromol. 2019;129:488–496. doi: 10.1016/j.ijbiomac.2019.02.041
- Wang S, Latallo MJ, Zhang Z, et al. Nuclear export and translation of circular repeat-containing intronic RNA in C9ORF72-ALS/FTD. Nat Commun. 2021;12(1):4908. doi: 10.1038/s41467-021-25082-9
- Wang W, Lv R, Zhang J, Liu Y. circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson’s disease. Mol Med Rep. 2021;24(1):540. doi: 10.3892/mmr.2021.12179
- Wang Z, Xu P, Chen B, et al. Identifying circRNA-associated-ceRNA networks in the hippocampus of Abeta1-42-induced Alzheimer’s disease-like rats using microarray analysis. Aging (Albany NY). 2018;10(4):775–788. doi: 10.18632/aging.101427
- Waters S, Tedroff J, Ponten H, et al. Pridopidine: Overview of pharmacology and rationale for its use in Huntington’s disease. J Huntingtons Dis. 2018;7(1):1–16. doi: 10.3233/JHD-170267
- Whitwell JL, Przybelski SA, Weigang SD, et al. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain. 2009;132(11):2932–2946. doi: 10.1093/brain/awp232
- Wei H, Yuan Y, Liu S, et al. Detection of circulating miRNA levels in schizophrenia. Am J Psychiatry. 2015;172(11):1141–1147. doi: 10.1176/appi.ajp.2015.14030273
- Witt SN. Molecular chaperones, α-synuclein, and neurodegeneration. Mol Neurobiol. 2013;47(2):552–560. doi: 10.1007/s12035-012-8325-2
- Wen G, Zhou T, Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell. 2020;12(12):911–946. doi: 10.1007/s13238-020-00799-3
- Wu F, Han B, Wu S, et al. Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335–3p/TIPARP. J Neurosci. 2019;39(37):7369–7393. doi: 10.1523/JNEUROSCI.0299-19.2019
- Xiao W, Li J, Hu J, et al. Circular RNAs in cell cycle regulation: Mechanisms to clinical significance. Cell Prolif. 2021;54(12):e13143. doi: 10.1111/cpr.13143
- Xie B-S, Wang Y-q, Lin Y, et al. Circular RNA expression profiles alter significantly after traumatic brain injury in rats. J Neurotrauma. 2018;35(14):1659–1666. doi: 10.1089/neu.2017.5468
- Yamasaki TR, Holmes BB, Furman JL, et al. Parkinson’s disease and multiple system atrophy have distinct alpha-synuclein seed characteristics. J Biol Chem. 2019;294(3):1045–1058. doi: 10.1074/jbc.RA118.004471
- Yang K, Zeng L, Ge A, et al. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol. 2022;13:930171. doi: 10.3389/fimmu.2022.930171
- Yang L, Zhang J, Kamelgarn M, et al. Subcellular localization and RNAs determine FUS architecture in different cellular compartments. Hum Mol Genet. 2015;24(18):5174–5183. doi: 10.1093/hmg/ddv239
- Yang R, Xu B, Yang B, et al. Non-coding RNAs: The extensive and interactive regulators of the blood-brain barrier permeability. RNA Biol. 2021;18(S1):108–116. doi: 10.1080/15476286.2021.1950465
- Yang W, Wang X, Duan C, et al. Alpha-synuclein overexpression increases phospho-protein phosphatase 2A levels via formation of calmodulin/Src complex. Neurochem Int. 2013;63(3):180–194. doi: 10.1016/j.neuint.2013.06.010
- Yao G, Niu W, Zhu X, et al. hsa_circRNA_104597: a novel potential diagnostic and therapeutic biomarker for schizophrenia. Biomark Med. 2019;13(5):331–340. doi: 10.2217/bmm-2018-0447
- Yoon G, Cho KA, Song J, Kim Y-K. Transcriptomic analysis of high fat diet fed mouse brain cortex. Front Gen. 2019;10:83. doi: 10.3389/fgene.2019.00083
- You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015;18(4):603–610. doi: 10.1038/nn.3975
- Zamanpoor M. Schizophrenia in a genomic era: a review from the pathogenesis, genetic and environmental etiology to diagnosis and treatment insights. Psychiatr Genet. 2020;30(1):1–9. doi: 10.1097/YPG.0000000000000245
- Zhang M, Deng Y, Luo Y, et al. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J Neurochem. 2012;120(6):1129–1138. doi: 10.1111/j.1471-4159.2011.07644.x
- Zhang P, Rasheed M, Liang J, et al. Emerging potential of exosomal non-coding RNA in Parkinson’s disease: A Review. Front Aging Neurosci. 2022;14:819836. doi: 10.3389/fnagi.2022.819836
- Zhang Y, Du L, Bai Y, et al. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Моl Psychiatry. 2018;25(6):1175–1190. doi: 10.1038/s41380-018-0285-0
- Zhang Y, Xue W, Li X, et al. The biogenesis of nascent circular RNAs. Cell Rep. 2016;15(3):611–624. doi: 10.1016/j.celrep.2016.03.058
- Zhao XD, Lu YY, Guo H, et al. MicroRNA-7/NF-κB signaling regulatory feedback circuit regulates gastric carcinogenesis. J Cell Biol. 2015;210(4):613–627. doi: 10.1083/jcb.201501073
- Zhao Y, Аlexandrov PN, Jaber V, Lukiw WJ. Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Gеne. 2016;7(12):116. doi: 10.3390/genes7120116
- Zhao Z, Li X, Jian D, et al. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol. 2017;54(3):237–245. doi: 10.1007/s00592-016-0943-0
- Zhou Y, Gu C, Li J, et al. Aberrantly expressed long noncoding RNAs and genes in Parkinson’s disease. Neuropsychiatr Dis Treat. 2018;14:3219–3229. doi: 10.2147/NDT.S178435
- Zhou Z-B, Du D, Chen K-Z, et al. Differential expression profiles and functional predication of circular ribonucleic acid in traumatic spinal cord injury of rats. J Neurotrauma. 2019;36(15):2287–2297. doi: 10.1089/neu.2018.6366
- Zhu L, Zhao R, Huang L, et al. Circular RNA expression in the brain of a neonatal rat model of periventricular white matter damage. Cell Physiol Biochem. 2018;49(6):2264–2276. doi: 10.1159/000493829
- Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 2022;13(7):644. doi: 10.1038/s41419-022-05075-2
- Zhu Z, Wang S, Cao Q, Li G. CircUBQLN1 promotes proliferation but inhibits apoptosis and oxidative stress of hippocampal neurons in epilepsy via the miR-155-mediated SOX7 upregulation. J Mol Neurosci. 2021;71(9):1933–1943. doi: 10.1007/s12031-021-01838-2
- Zhuang Z-G, Zhang J-A, Luo H-L, et al. The circular RNA of peripheral blood mononuclear cells: Hsa_circ_0005836 as a new diagnostic biomarker and therapeutic target of active pulmonary tuberculosis. Mol Immunol. 2017;90:264–272. doi: 10.1016/j.molimm.2017.08.008
- Zhuo C-J, Hou W-H, Jiang D-G, et al. Circular RNAs in early brain development and their influence and clinical significance in neuropsychiatric disorders. Neural Regen Res. 2020;15(5):817–823. doi: 10.4103/1673-5374.268969
- Zurawska A, Mycko MP, Selmaj KW. Circular RNAs as a novel regulatory mechanism in мultiple sclerosis. J Neuroimmunology. 2019;334:576971. doi: 10.1016/j.jneuroim.2019.576971
