Circular RNAs — a modern perspective on the molecular mechanisms of neurologic diseases in humans and prospects for therapeutic agents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In mammals, the brain exhibits significantly higher expression levels of various noncoding RNAs (ncRNAs) compared to other organs. Among these, circular RNAs (circRNAs) have recently emerged as a distinct class of ncRNAs. CircRNAs are formed by back-splicing and fusion of exons, introns, or both, resulting in covalently closed loops. Abundant in the brain, circRNAs levels increase during development and persist into adulthood. The functional significance and mechanisms of circRNA action are subjects of ongoing search, with indications that they regulate the transcription of host genes and sequestration of miRNAs and RNA binding proteins. Some circRNAs have also shown potential for translation, giving rise to peptides. In a healthy brain, circRNA expression and abundance are carefully regulated spatiotemporally. However, altered expression of circRNAs is associated with several disorders, including brain tumor growth and acute and chronic neurodegenerative disorders. This is believed to be through their impact on mechanisms such as angiogenesis, neuronal plasticity, autophagy, apoptosis, and inflammation. The unique properties of circRNAs make them promising molecular biomarkers, especially in the context of neurodegenerative diseases. This review provides a comprehensive overview of circRNAs, focusing on their role in the pathogenesis of major neurodegenerative disorders, namely, Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, schizophrenia, and amyotrophic lateral sclerosis (ALS). Additionally, it discusses the potential utility of circRNAs in biomarker discovery for these debilitating conditions.

About the authors

Petr D. Shabanov

Kirov Military Medical Academy

Author for correspondence.
Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-code: 8974-7477

Dr. Sci. (Med.), professor and head of the S.V. Anichkov Department of Neuropharmacology

Russian Federation, Saint Petersburg

Vladimir I. Vashchenko

Kirov Military Medical Academy

Email: vladimir-vaschenko@yandex.ru

Dr. Sci. (Biol.), leading research associate, Centre of Blood and Tissues

Russian Federation, Saint Petersburg

L. P. Savelieva

Kirov Military Medical Academy

Email: lidalab@rambler.ru

head of the clinical laboratory, Centre of Blood and Tissues

Russian Federation, Saint Petersburg

Yuliya E. Romashova

Kirov Military Medical Academy

Email: pdshabanov@mail.ru
ORCID iD: 0000-0002-5771-0789
SPIN-code: 3921-7090

сhief, Centre of Blood and Tissues

Russian Federation, Saint Petersburg

References

  1. Afanasieva OI, Ezhov MV, Pokrovsky SN. Antisense oligonucleotides and therapeutical monoclonal antibodies as a basement for novel biological lipidlowering drugs. Russian Journal of Cardiology. 2018;23(8): 99–109. (In Russ.) doi: 10.15829/1560-4071-2018-8-99-109
  2. Bozhkova ED, Balandina ОV, Konovalov АА. Autism spectrum disorders: state-of-the-art (Review). Modern Technologies in Medicine. 2020;12(2):111–120. (In Russ.) doi: 10.17691/stm2020.12.2.14
  3. Boyko AN, Gusev EI. Advances in multiple sclerosis research (Review). The Doctor. 2012;(5):9–15. (In Russ.)
  4. Vasenina EЕ, Veryugina NI, Levin OS. Modern concepts of diagnosis and treatment frontotemporal dementia. Sovremennaya terapiya v psikhiatrii i nevrologii. 2015;(3):26–34. (In Russ.)
  5. Vashchenko VI, Chuklovin AB, Shabanov PD. Circular RNAs in eukaryotic cells: origin, characteristics, mechanisms of molecular functioning in human malignant diseases. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(4):335–384. (In Russ.) doi: 10.17816/RCF204335-384
  6. Gulyaev SA. Specificity of biochemical mechanisms of excitation formation in symptomatic epilepsy (A review). Russian Journal of Child Neurology. 2011;6(1):31–38. (In Russ.)
  7. Ershova MV, Akhmadullina DR, Fedotova EYu, Illarioshkin SN. Current concept of multiple system atrophy. Aktual’nye voprosy nevrologii. 2018;(4):3–12. (In Russ.) doi: 10.24411/2071-5315-2018-12051
  8. Zuev VA. Immunology theory of Alzheimer disease pathogenesis: facts and hypothesis. Modern Problems of Science and Education. 2019;(4):28961. (In Russ.) doi: 10.17513/spno.28961
  9. Karlov VA. Evolution of LR. Zenkov. Epilepsy as a model for studying the CNS function. Epilepsy and paroxysmal conditions. 2018;10(3):79–86. (In Russ.)
  10. Klimenko LL, Skalny AV, Turna AA, et al. Metal-ligand homeostasis in etiopathogenesis of Alzheimer’s disease (Review). Microelements in Medicine. 2016;17(4):3–10. (In Russ.) doi: 10.19112/2413-6174-2016-17-4-3-10
  11. Klyushnikov SA. Huntington’s disease. L.O. Badalyan Neurological Journal. 2020;1(3):139–158. (In Russ.) doi: 10.17816/2686-8997-2020-1-3-139-158
  12. Krot KV. Optimizatsiya lekarstvennogo obespecheniya bol’nykh shizofreniei: regional’nye farmakoehpidemiologicheskie i farmakoehkonomicheskie aspekty [dissertation]. Khabarovsk, 2016. 186 p. (In Russ.)
  13. Mikhel DV. Bipolar disorder: An epidemic or a consequence of the medicalization of society? Vestnik of Saint Petersburg University. Sociology. 2018;11(1):51–65. (In Russ.) doi: 10.21638/spbu12.201.105
  14. Morozova AYu, Zubkov EA, Zorkina YaA, et al. Genetic aspects of schizophrenia. The Korsakov’s Journal of Neurology and Psychiatry. 2017;(6):126–132. (In Russ.) doi: 10.17116/jnevro201711761126-132
  15. Pal’tsev MA, Polyakova VO, Lin’kova NS, et al. Molekulyarno-kletochnye mekhanizmy bolezni Al’tsgeimera. Molecular medicine. 2016;14(6):3–10. (In Russ.)
  16. Panyukova AS. Statistics of mental disorders in the Russian Federation. SKIF. Voprosy studencheskoi nauki. 2019;(11): 589–595. (In Russ.)
  17. Pereverzev AP, Romanovskii RR, Shatalova NA, Ostroumova OD. Inflammaging: inflammation and oxidative stress as a cause of aging and cognitive decline. Medical Council. 2021;(4):48–58. (In Russ.) doi: 10.21518/2079-701X-2021-4-48-58
  18. Prozherina J. Modern insight into the problem of schizophrenia. REMEDIUM. 2018;(1–2):49–54. (In Russ.) doi: 10.21518/1561-5936-2018-1-2-49-54
  19. Razdorskaya VV, Voskresenskaya ON, Yudina GK. Parkinson’s disease in Russia: prevalence and incidence. Saratov Journal of Medical Scientific Research. 2016;12(3):379–384. (In Russ.)
  20. Stolyarov ID, editor. Rasseyannyi skleroz. Monoklonal’naya terapiya. Moscow: Meditsina-Inform, 2019. 240 p. (In Russ.)
  21. Simonova VV. Sovremennye vozmozhnosti issledovaniya kletochnykh i molekulyarnykh mekhanizmov bolezni Parkinsona. New technologies. 2018;(1):9–13. (In Russ.) doi: 10.24411/2071-5315-2018-12014
  22. Skvortsova VI, Levitskii GN, Zakharova MN. Nevrologiya: natsional’noe rukovodstvo. Kratkoe izdanie. Ed. by E.I. Guseva, A.N. Konovalova, A.B. Gekht. Moscow: GEOTAR-Meditsina, 2018. 688 p. (In Russ.)
  23. Stefanova NA, Kolosova NG. Evolution of understanding of Alzheimer’s disease pathogenesis. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(1):6–13. (In Russ.)
  24. Stoychev KR, Ivanov K, Kojuharov ChV, et al. Antypsychotics in schizophrenia treatment — Literature review. Human. Sport. Medicine. 2016;16(3):25–36. (In Russ.) doi: 10.14529/hsm160304
  25. Tappakhov AA, PopovaTE, NikolaevaTYa, et al. Epidemiology of Parkinson’s disease in the world and Russia. The Transbaikalian Bulletin. 2016;(4):151–159. (In Russ.)
  26. Shabanov PD, Orlov FA, Tutaeva VV, et al. Lekarstvennye sredstva, primenyaemye v gematologii: klassifikatsiya i opisanie preparatov. In: Rukavitsyn OA, editor. Ratsional’naya farmakoterapiya v gematologii. Moscow: Litterra, 2021. P. 549–782. (In Russ.)
  27. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53. DOI: 10.1038 /nrn1824
  28. Ahmad R, Sportelli V, Ziller M, et al. Tracing early neurodevelopment in schizophrenia with induced pluripotent stem cells. Cells. 2018;7(9):140. doi: 10.3390/cells7090140
  29. Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. 2013;9:617–628. doi: 10.1038/nrneurol.2013.203
  30. Ansel A, Rosenzweig JP, Zisman PD, et al. Variation in gene expression in autism spectrum disorders: an extensive review of transcriptomic studies. Front Neurosci. 2016;10:601. doi: 10.3389/fnins.2016.00601
  31. Armakola M, Higgins MJ, Figley MD, et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet. 2012;44(12):1302–1309. doi: 10.1038/ng.2434
  32. Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66. doi: 10.1016/j.molcel.2014.08.019
  33. Bai Y, Zhang Y, Han B, et al. Circular RNA DLGAP4 Ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci. 2018;38(1):32–50. doi: 10.1523/JNEUROSCI.1348-17.2017
  34. Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 2015;61(1):221–230. doi: 10.1373/clinchem.2014.230433
  35. Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurology. 2019;27(1):27–42. doi: 10.1111/ene.14108
  36. Banote RK, Akel S, Zelano J. Blood biomarkers in epilepsy. Acta Neurologica Scandinavica. 2022;146(4):362–368. doi: 10.1111/ane.13616
  37. Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386(10004):1672–1682. doi: 10.1016/S0140-6736(15)00461-4
  38. Bartels T, Choi JG, Selkoe JS. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature. 2011;477(7362):107–110. doi: 10.1038/nature10324
  39. Bassett AS, Collins EJ, Nuttall SE, Honer WG. Positive and negative symptoms in families with schizophrenia. Schizophr Res. 1993;11(1):9–19. doi: 10.1016/0920-9964(93)90033-F
  40. Bateman RJ, Aisen PS, De Strooper, et al. Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s. Alzheimers Res Ther. 2011;3(1):1. doi: 10.1186/alzrt59
  41. Bates GP, Dorsey R, Gusella JF, et al. Huntington disease. Nat Rev Dis Primers. 2015;1:15005. doi: 10.1038/nrdp.2015.5
  42. Berge-Seidl V, Pihlstrøm L, Maple-Grødem J, et al. The GBA variant E326K is associated with Parkinson’s disease and explains a genome-wide association signal. Neurosci Lett. 2017;658:48–52. doi: 10.1016/j.neulet.2017.08.040
  43. Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: double trouble. Neuron. 2020;107(2):234–256. doi: 10.1016/j.neuron.2020.06.002
  44. Boldrini M, Santiago AN, Hen R, et al. Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacol. 2013;38(6):1068–1077. doi: 10.1038/npp.2013.5
  45. Bonelli RM, et al. Gentington. Circ Res. 2001;117(10):884–890. doi: 10.1002/mpr.106
  46. Brisinda D, Sorbo AR, Di Giacopo R, et al. Cardiovascular autonomic nervous system evaluation in Parkinson disease and multiple system atrophy. J Neurol Sci. 2014;336(1–2):197–202. doi: 10.1016/j.jns.2013.10.039
  47. Burré J, Sharma M, Tsetsenis T, et al. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329(5999):1663–1667. doi: 10.1126/science.1195227
  48. Burré J, Sharma M, Südhof TC. Alpha-synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. PNAS USA. 2014;111(40):E4274–E4283. doi: 10.1073/pnas.1416598111
  49. Cacquevel M, Aeschbach L, Houacine J, Fraering PC. Alzheimer’s disease-linked mutations in presenilin-1 result in a drastic loss of activity in purified γ-secretase complexes. PLoS One. 2012;7(4): e35133. doi: 10.1371/journal.pone.0035133
  50. Caprio FZ, Sorond FA. Cerebrovascular disease: Primary and secondary stroke prevention. Med Clin North Am. 2019;103(2):295–308. doi: 10.1016/j.mcna.2018.10.001
  51. Cardamone G, Paraboschi EM, Solda G, et al. Not only cancer: the long non-coding RNA MALAT1 affects the repertoire of alternatively spliced transcripts and circular RNAs in multiple sclerosis. Hum Mol Genet. 2018;28(9):1414–1428. doi: 10.1093/hmg/ddy438
  52. Cardno AG, Owen MJ. Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr Bull. 2014;40(3):504–515. doi: 10.1093/schbul/sbu016
  53. Cervera-Carles L, Dols-Icardo O, Molina-Porcel L, et al. Assessing circular RNAs in Alzheimer’s disease and frontotemporal lobar degeneration. Neurobiol Aging. 2020;92:7–11. doi: 10.1016/j.neurobiolaging.2020.03.017
  54. Charlson F, Van Ommeren M, Flaxman A, et al. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet. 2019;394(10194): 240–248. doi: 10.1016/S0140-6736(19)30934-1
  55. Chen BJ, Huang S, Janitz M. Changes in circular RNA expression patterns during human foetal brain development. Genomics. 2019;111(4):753–758. doi: 10.1016/j.ygeno.2018.04.015
  56. Chen BJ, Mills JD, Takenaka K, et al. Characterization of circular RNAs landscape in multiple system atrophy brain. J Neurochem. 2016;139(3):485–496. doi: 10.1111/jnc.13752
  57. Chen M, Lai X, Wang X, et al. Long non-coding RNAs and circular RNAs: Insights into microglia and astrocyte mediated neurological diseases. Front Mol Neurosci. 2021;14:745066. doi: 10.3389/fnmol.2021.745066
  58. Chen RHC, Wislet-Gendebien S, Samuel F, et al. α-synuclein membrane association is regulated by the Rab3a recycling machinery and presynaptic activity. J Biol Chem. 2013;288(11):7438–7449. doi: 10.1074/jbc.M112.439497
  59. Chen W, Schuman E. Circular RNAs in brain and other tissues: a functional enigma. Trends Neurosci. 2016;39(9):597–604. doi: 10.1016/j.tins.2016.06.006
  60. Chen Y-J, Chen C-Y, Mai T-L, et al. Genome-wide, integrative analysis of circular RNA dysregulation and the corresponding circular RNA-microRNA-mRNA regulatory axes in autism. Genome Res. 2020;30(3):375–391. doi: 10.1101/gr.255463.119
  61. Choi B-K, Choi M-G, Kim J-Y, et al. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. PNAS USA. 2013;110(10):4087–4092. doi: 10.1073/pnas.1218424110
  62. Corey DR. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat Neurosci. 2017;20(4):497–499. doi: 10.1038/nn.4508
  63. Cortés-López M, Miura P. Emerging functions of circular RNAs. Yale J Biol Med. 2016;89(4):527–537.
  64. Crump C, Sundquist K, Winkleby MA, et al. Comorbidities and mortality in bipolar disorder: a Swedish national cohort study. JAMA Psychiatry. 2013;70(9):931–939. doi: 10.1001/jamapsychiatry.2013.1394
  65. Cui X, Niu W, Kong L, et al. hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in Major depressive disorder. Biomark Med. 2016;10(9):943–952. doi: 10.2217/bmm-2016-0130
  66. D’Anca M, Buccellato FR, Fenoglio C, Galimberti D. Circular RNAs: emblematic players of neurogenesis and neurodegeneration. Int J Mol Sci. 2022;23(8):4134. doi: 10.3390/ijms23084134
  67. Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol. 2014;10(6):337–348. doi: 10.1038/nrneurol.2014.78
  68. Dharap A, Bowen K, Place R, et al. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 2009;29(4):675–687. doi: 10.1038/jcbfm.2008.157
  69. Dharap A, Nakka VP, Vemuganti R. Altered expression of PIWI RNA in the rat brain after transient focal ischemia. Stroke. 2011;42(4):1105–1109. doi: 10.1161/STROKEAHA.110.598391
  70. Dharap A, Nakka VP, Vemuganti R. Effect of focal ischemia on long noncoding RNAs. Stroke. 2012;43(10):2800–2802. doi: 10.1161/STROKEAHA.112.669465
  71. Dharap A, Pokrzywa C, Murali S, et al. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One. 2013;8(11): e79467. doi: 10.1371/journal.pone.0079467
  72. Dharap A, Pokrzywa C, Vemuganti R. Increased binding of stroke-induced long non-coding RNAs to the transcriptional coexpressors Sin3A and coREST. ASN Neuro. 2013;5(4):283–289. doi: 10.1042/AN20130029
  73. Dorostgou Z, Yadegar N, Dorostgou Z, et al. Novel insights into the role of circular RNAs in Parkinson disease: An emerging renaissance in the management of neurodegenerative diseases. J Neurosci Res. 2022;100(9):1775–1790. doi: 10.1002/jnr.25094
  74. Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol. 2009;10(12):1252–1259. doi: 10.1038/ni.1798
  75. Du Y, Yu Y, Hu Y, et al. Genome-wide, integrative analysis implicates exosome-derived microrna dysregulation in schizophrenia. Schizophr Bull. 2019;45(6):1257–1266. doi: 10.1093/schbul/sby191
  76. Duan X, Li L, Gan J, et al. Identification and functional аnalysis of circular RNAs induced in rats by middle cerebral artery occlusion. Gen. 2019;701:139–145. doi: 10.1016/j.gene.2019.03.053
  77. Dube U, Del-Aguila JL, Li Z, et al. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci. 2019;22(11):1903–1912. doi: 10.1038/s41593-019-0501-5
  78. Dutta R, Trapp BD. Relapsing and progressive forms of multiple sclerosis: insights from pathology. Сurr Opin Neurol. 2014;27(3): 271–278. doi: 10.1097/WCO.0000000000000094
  79. Ebbesen KK, Kjems J, Hansen TB. Circular RNAs: Identification, biogenesis and function. Biochim Biophys Acta. 2016;1859(1): 163–168. doi: 10.1016/j.bbagrm.2015.07.007
  80. Emamzadeh FN. Alpha-synuclein structure, functions, and interactions. J Res Med Sci. 2016;21:29. doi: 10.4103/1735–1995.181989
  81. Emmanouilidou E, Minakaki G, Keramioti MV, et al. GABA transmission via ATP-dependent K+ channels regulates α-synuclein secretion in mouse striatum. Brain. 2016;139(3):871–890. doi: 10.1093/brain/awv403
  82. Enuka Y, Lauriola M, Feldman ME, et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44(3):1370–1383. doi: 10.1093/nar/gkv1367
  83. Errichelli L, Dini Modigliani S, Laneve P, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 2017;8:14741. doi: 10.1038/ncomms14741
  84. Fang Y, Wang X, Li W, et al. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. Int J Mol Med. 2018;42(4):1865–1874. doi: 10.3892/ijmm.2018.3783
  85. Fеnоgliо С, Scarpini E, Galimberti D. Epigenetic regulatory modifications in genetic and sporadic frontotemporal dementia. Expert Rev Neuroth. 2018;18(6):469–475. doi: 10.1080/14737175.2018.1481389
  86. Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: A phase 2, openlabel, dose-escalation study. Lancet. 2016;388(10063):3017–3026. DOI: 10.1016 / S0140-6736(16)31408-8
  87. Fu Y, He W, Zhou C, et al. Bioinformatics analysis of circRNA expression and construction of “circRNA-miRNA-mRNA” competing endogenous RNAs networks in bipolar disorder patients. Front Genet. 2021;12:718976. doi: 10.3389/fgene.2021.718976
  88. Gao FB, Richter JD, Cleveland DW. Rethinking unconventional translation in neurodegeneration. Cell. 2017;171(5):994–1000. doi: 10.1016/j.cell.2017.10.042
  89. GBD2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1789–1858. doi: 10.1016/S0140-6736(18)32279-7
  90. Geng X, Lou H, Wang J, et al. α-synuclein binds the K (ATP) channel at insulin-secretory granules and inhibits insulin secretion. Am J Physiol Endocrinol Metab. 2011;300(2):E276–E286. doi: 10.1152/ajpendo.00262.2010
  91. Ghafouri-Fard S, Badrlou E, Tahori M, et al. A Comprehensive review on the role of non-coding rnas in the pathophysiology of bipolar disorder. Mol Sci. 2022;22(10):5156. doi: 10.3390/ijms22105156
  92. Gokool A, Anwar F, Voineagu I. The landscape of circular RNA expression in the human brain. Biol Psychiatry. 2020;87(3):294–304. doi: 10.1016/j.biopsych.2019.07.029
  93. Gonda X, Petschner P, Eszlari N, et al. Genetic variants in major depressive disorder: from pathophysiology to therapy. Pharmacol Therapeut. 2019;194:22–43. doi: 10.1016/j.pharmthera.2018.09.002
  94. Greenway MJ, Andersen PM, Russ C, et al. ANG mutations segregate with familial and “sporadic” amyotrophic lateral sclerosis. Nat Genet. 2006;38(4):411–413. doi: 10.1038/ng1742
  95. Grove J, Ripke S, Als TD, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51(3):431–444. doi: 10.1038/s41588-019-0344-8
  96. Gruner H, Cortes-Lopez M, Cooper DA, et al. CircRNA accumulation in the aging mouse brain. Sci Rep. 2016;6:38907. doi: 10.1038/srep38907
  97. Haeusler AR, Donnelly CJ, Rothstein JD. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat Rev Neurosci. 2016;17(6):383–395. doi: 10.1038/nrn.2016.38
  98. Han B, Zhang Y, Zhang Y, et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy. 2018;14(7):1164–1184. doi: 10.1080/15548627.2018.1458173
  99. Hanan M, Soreq H, Kadener S. CircRNAs in the brain. RNA Biol. 2017;14(8):1028–1034. doi: 10.1080/15476286.2016.1255398
  100. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441): 384–388. doi: 10.1038/nature11993
  101. Harciarek M, Cosentino S. Language, executive function and social cognition in the diagnosis of frontotemporal dementia syndromes. Int Rev Psychiatry. 2013;25(2):178–196. doi: 10.3109/09540261.2013.763340
  102. Hayes JF, Miles J, Walters K, et al. A systematic review and meta-analysis of premature mortality in bipolar affective disorder. Acta Psychiatr Scand. 2015;131(6):417–425. doi: 10.1111/acps.12408
  103. Henley SMD, Wild EJ, Hobbs NZ, et al. Whole-brain atrophy as a measure of progression in premanifest and early Huntington’s disease. Mov Disord. 2009;24(6):932–936. doi: 10.1002/mds.22485
  104. Hofmann JW, Seeley WW, Huang EJ. RNA binding proteins and the pathogenesis of frontotemporal lobar degeneration. Ann Rev Pathol. 2019;14:469–495. doi: 10.1146/annurev-pathmechdis-012418-012955
  105. Holdt LM, Kohlmaier A, Teupser D. Circular RNAs as therapeutic agents and targets. Front Physiol. 2018;9:1262. doi: 10.3389/fphys.2018.01262
  106. Huang J-L, Xu Z-H, Yang S-M, et al. Identification of differentially expressed profiles of Alzheimer’s disease Associated Circular RNAs in a Panax notoginseng saponins-treated Alzheimer’s disease mouse model. Comput Struct Biotechnol J. 2018;16:523–531. doi: 10.1016/j.csbj.2018.10.010
  107. Huang R, Zhang Y, Bai Y, et al. N6-methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors. Biol Psych. 2020;88(5):392–404. doi: 10.1016/j.biopsych.2020.02.018
  108. Huang Y, Wang Y, Wang H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psych. 2019;6(3):211–224. doi: 10.1016/S2215-0366(18)30511-X
  109. Huang Z-K, Yao F-Y, Xu J-Q, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from active tuberculosis patients. Cell Physiol Biochem. 2018;45(3):1230–1240. doi: 10.1159/000487454
  110. Idda ML, Munk R, Abdelmohsen K, Gorospe M. Noncoding RNAs in Alzheimer’s disease. Wiley Interdiscip Rev RNA. 2018;9(2): e1463. doi: 10.1002/wrna.1463
  111. Iparraguirre L, Alberro A, Hansen TB, et al. Profiling of plasma extracellular vesicle transcriptome reveals that circRNAs are prevalent and differ between multiple sclerosis patients and healthy controls. Biomedicines. 2021;9(12):1850. doi: 10.3390/biomedicines9121850
  112. Jiang L, Li H, Fan Z, et al. Circular RNA expression profiles in neonatal rats following hypoxic-ischemic brain damage. Int J Mol Med. 2019;43(4):1699–1708. doi: 10.3892/ijmm.2019.4111
  113. Jiang Y-J, Cao S-Q, Gao L-B, et al. Circular ribonucleic acid expression profile in mouse cortex after traumatic brain injury. J Neurotrauma. 2019;36(7):1018–1028. doi: 10.1089/neu.2018.5647
  114. Jin H, Kanthasamy A, Ghosh A, et al. α-synuclein negatively regulates protein kinase Cd expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity. J Neurosci. 2011;31(6):2035–2051. doi: 10.1523/JNEUROSCI.5634-10.2011
  115. Junn E, Lee K-W, Jeong BS, et al. Repression of alpha-synuclein expression and toxicity by microRNA-7. PNAS USA. 2009;106(31):13052–13057. doi: 10.1073/pnas.0906277106
  116. Karch CM, Jeng AT, Nowotny P, et al. Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease. PLoS One. 2012;7(11): e50976. doi: 10.1371/journal.pone.0050976
  117. Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of luxturna (and Zolgensma and Glybera): Where are we, and how did we get here? Ann Rev Virol. 2019;6(1):601–621. doi: 10.1146/annurev-virology-092818-015530
  118. Kim T, Mehta SL, Morris-Blanco KC, et al. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing alpha-synuclein. Sci Signal. 2018;11(560): eaat4285. doi: 10.1126/scisignal.aat4285.
  119. Kim TD, Paik SR, Yang CH, Kim J. Structural changes in alpha-synuclein affect its chaperone-like activity in vitro. Protein Sci. 2000;9(12):2489–2496. doi: 10.1110/ps.9.12.2489
  120. Knupp D, Miura P. CircRNA accumulation: A new hallmark of aging? Mech Ageing Dev. 2018;173:71–79. doi: 10.1016/j.mad.2018.05.001
  121. Koníčková D, Menšíková K, Tučková L, et al. Biomarkers of neurodegenerative diseases: biology, taxonomy, clinical relevance, and current research status. Biomedicines. 2022;10(7):1760. doi: 10.3390/biomedicines10071760
  122. Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74(6):1031–1044. doi: 10.1016/j.neuron.2012.05.009
  123. Kraus TFJ, Haider M, Spanner J, et al. Altered long noncoding RNA expression precedes the course of Parkinson’s disease — a preliminary report. Mol Neurobiol. 2017;54(4):2869–2877. doi: 10.1007/s12035-016-9854-x
  124. Kumar L, Shamsuzzama, Jadiya P, et al. Functional characterization of novel circular RNA molecule, circzip-2 and its synthesizing gene zip-2 in C. elegans model of Parkinson’s disease. Mol Neurobiol. 2018;55(8):6914–6926. doi: 10.1007/s12035-018-0903-5
  125. Kume K, Iwama H, Deguchi K, et al. Serum microRNA expression profiling in patients with multiple system atrophy. Mol Med Rep. 2018;17(1):852–860. doi: 10.3892/mmr.2017.7995
  126. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–1208. doi: 10.1126/science.1166066
  127. Lagier-Tourenne C, Polymenidou M, Hutt KR, et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci. 2012;15(11):1488–1497. doi: 10.1038/nn.3230
  128. Lambert J-C, Grenier-Boley B, Harold D, et al. Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer’s disease. Mol Psychiatry. 2013;18(4):461–470. doi: 10.1038/mp.2012.14
  129. Lasda E, Parker R. Circular RNAs Co-Precipitate with extracellular vesicles: A possible mechanism for circRNA clearance. PLoS ONE. 2016;11(2): e0148407. doi: 10.1371/journal.pone.0148407
  130. Latchoumycandane C, Anantharam V, Kitazawa M, et al. Protein kinase Cdelta is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther. 2005;313(1):46–55. doi: 10.1124/jpet.104.078469
  131. Lee S, Mankhong S, Kang J-H. Extracellular vesicle as a source of Alzheimer ‘s biomarkers: Opportunities and challenges. Int J Mol Sci. 2019;20(7):1728. doi: 10.3390/ijms20071728
  132. Lee S-Y, Lu R-B, Wang L-J, et al. Serum miRNA as a possible biomarker in the diagnosis of bipolar II disorder. Sci Rep. 2020;10(1):1131. doi: 10.1038/s41598-020-58195-0
  133. Li H, Li K, Lai W, et al. Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta. 2018;480:17–25. doi: 10.1016/j.cca.2018.01.026
  134. Li J, Shi Q, Wang Q, et al. Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction. Neurosci Lett. 2019;701: 146–153. doi: 10.1016/j.neulet.2019.02.032
  135. Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–136. doi: 10.1016/j.cca.2015.02.018
  136. Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981–984. doi: 10.1038/cr.2015.82
  137. Li Z, Liu S, Li X, et al. Circular RNA in schizophrenia and depression. Front Psychiatry. 2020;11:392. doi: 10.3389/fpsyt.2020.00392
  138. Liao F, Zhu L, Yang J, et al. Whole transcriptome sequencing identified CircRNA Profiles and the related networks in schizophrenia. J Mol Neurosci. 2022;72:1622–1635. doi: 10.1007/s12031-022-02013-x
  139. Li J, Sun D, Pu W, et al. Circular RNAs in cancer: Biogenesis, function, and clinical significance. Trends Cancer. 2020;6(4):319–336. doi: 10.1016/j.trecan.2020.01.012
  140. Lipp A, Sandroni P, Ahlskog JE, et al. Prospective differentiation of multiple system atrophy from Parcinson disease with and without autonomic failure. Аrch Neurol. 2009;66(6):742–750. doi: 10.1001/archneurol.2009.71
  141. Liu C, Zhang C, Yang J, et al. Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget. 2017;8(49):86535–86547. doi: 10.18632/oncotarget.21238
  142. Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–95. doi: 10.1038/nchembio.1432
  143. Liu Q, Li Q, Zhang R, et al. circ-Pank1 promotes dopaminergic neuron neurodegeneration through modulating miR-7a-5p/α-syn pathway in Parkinson’s disease. Cell Death Disease. 2022;13(5):477. doi: 10.1038/s41419-022-04934-2
  144. Liu S, Zhang F, Shugart YY, et al. The early growth response protein 1-miR-30a-5p-neurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Transl Psychiatry. 2017;7(1): e998. doi: 10.1038/tp.2016.268
  145. Lukiw WJ. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Gen. 2013;4:307. doi: 10.3389/fgene.2013.00307
  146. Maass PG, Glažar P, Memczak S, et al. A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl). 2017;95(11):1179–1189. doi: 10.1007/s00109-017-1582-9
  147. MacDonald ME, Ambrose CM, Duyao MP, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–983. doi: 10.1016/0092-8674(93)90585-E
  148. Mackenzie IRA, Bigio EH, Ince PG, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007;61(5):427–434. doi: 10.1002/ana.21147
  149. Mackenzie IR, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 2010;9(10):995–1007. doi: 10.1016/S1474-4422(10)70195-2
  150. Mahmoudi E, Fitzsimmons C, Geaghan MP, et al. Circular RNA biogenesis is decreased in postmortem cortical gray matter in schizophrenia and may alter the bioavailability of associated miRNA. Neuropsychopharmacology. 2019;44(6):1043–1054. doi: 10.1038/s41386-019-0348-1
  151. Mahmoudi E, Green MJ, Cairns MJ. Dysregulation of circRNA expression in the peripheral blood of individuals with schizophrenia and bipolar disorder. J Mol Med (Berl). 2021;99(7):981–991. doi: 10.1007/s00109-021-02070-6
  152. Malhi GS, Mann JJ. Depression. Lancet. 2018;392(10161): 2299–2312. doi: 10.1016/S0140-6736(18)31948-2
  153. Majidinia M, Mihanfar A, Rahbarghazi R, et al. The roles of non-coding RNAs in Parkinson’s disease. Mol Biol Rep. 2016;43(11): 1193–1204. doi: 10.1007/s11033-016-4054-3
  154. Marfil-Marin E, Santamaría-Olmedo M, PerezGrovas-Saltijeral A, et al. circRNA regulates dopaminergic synapse, MAPK, and long-term depression pathways in Huntington disease. Mol Neurobiol. 2021;58(12):6222–6231. doi: 10.1007/s12035-021-02536-1
  155. Marques TM, Kuiperij HB, Bruinsma IB, et al. MicroRNAs in cerebrospinal fluid as potential biomarkers for Parkinson’s disease and multiple system atrophy. Mol Neurobiol. 2017;54(19):7736–7745. doi: 10.1007/s12035-016-0253-0
  156. Martinez J, Moeller I, Erdjument-Bromage H, et al. Parkinson’s disease-associated alpha-synuclein is a calmodulin substrate. J Biol Chem. 2003;278(19):17379–17387. doi: 10.1074/jbc.M209020200
  157. Mathis S, Le Masson G. RNA-targeted therapies and amyotrophic lateral sclerosis. Biomedicines. 2018;6(1):9. doi: 10.3390/biomedicines6010009
  158. McIntyre RS, Berk M, Briezke E, et al. Bipolar disorders. Lancet. 2020;396(10265):1841–1856. doi: 10.1016/SO140-6736(20)31544-0
  159. Meade RM, Fairlie DP, Mason JM. Alpha-synuclein structure and Parkinson’s disease — lessons and emerging principles. Mol Neurodegeneration. 2019;14(1):29. doi: 10.1186/s13024-019-0329-1
  160. Mehta SL, Dempsey RJ, Vemuganti R. Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol. 2020;186:101746. doi: 10.1016/j.pneurobio.2020.101746
  161. Mehta SL, Kim T, Vemuganti R. Long noncoding RNA FosDT promotes ischemic brain Injury by Interacting with REST-associated chromatin-modifying proteins. J Neurosci. 2015;35(50):16443–16449. doi: 10.1523/JNEUROSCI.2943–15.2015
  162. Mehta SL, Manhas N, Raghubir R. Моlecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54(1):34–66. doi: 10.1016/j.brainresrev.2006.11.003
  163. Mehta SL, Pandi G, Vemuganti R. Circular RNA expression profiles alter significantly in mouse brain after transient focal ischemia. Stroke. 2017;48(9):2541–2548. doi: 10.1161/STROKEAHA.117.017469
  164. Meissner L, Gallozzi M, Balbi M, et al. Temporal profile of MicroRNA expression in contused cortex after traumatic brain injury in mice. J Neurotrauma. 2016;33(8):713–720. doi: 10.1089/neu.2015.4077
  165. Xiao M-S, Ai Y, Wilusz JE. Biogenesis and functions of circular RNAs come into focus. Trends Cell Biol. 2019;30(3):226–240. doi: 10.1016/j.tcb.2019.12.004
  166. Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS ONE. 2015;10(10): e0141214. doi: 10.1371/journal.pone.0141214
  167. Mi Z, Zhongqiang C, Caiyun J, et al. Circular RNA detection methods: A minireview. Talanta. 2022;238(Pt 2):123066. doi: 10.1016/j.talanta.2021.123066
  168. Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: A phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12(5):435–442. doi: 10.1016/S1474-4422(13)70061-9
  169. Miller SJ, Campbell CE, Jimenez-Corea HA, et al. Neuroglial senescence, α-synucleinopathy, and the therapeutic potential of senolytics in Parkinson’s disease. Front Neurosci. 2022;16:824191. doi: 10.3389/fnins.2022.824191
  170. Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ. 2022;29(3):481–491. doi: 10.1038/s41418-022-00948-7
  171. Mo D, Li X, Raabe CA. The role of Aβ circRNA in Alzheimer’s disease: alternative mechanism of Aβ biogenesis from Aβ circRNA translation. bioRxiv. 2020;260968. doi: 10.1101/260968
  172. Mori K, Weng S-M, Arzberger T, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013;339(6125):1335–1338. doi: 10.1126/science.1232927
  173. Nedoluzhko A, Gruzdeva N, Sharko F, et al. The biomarker and therapeutic potential of circular RNAs in schizophrenia. Cells. 2020;9(10):2238. doi: 10.3390/cells9102238
  174. Neil EE, Bisaccia EK. Nusinersen: A novel antisense oligonucleotide for the treatment of spinal muscular atrophy. J Pediatr Pharmacol Ther. 2019;24(3):194–203. doi: 10.5863/1551-6776-24.3.194
  175. Nguyen LD, Chau RK, Kricheewsky AM. Smal molecule drugs targeting non-coding RNAs as treatments for Alzheimers disease and related dementias. Genes. 2021;12(12):2005. doi: 10.3390/genes12122005
  176. Ostrerova N, Petrucelli L, Farrer M, et al. Alpha-synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci. 1999;19(14):5782–5791. doi: 10.1523/JNEUROSCI.19-14-05782.1999
  177. Ouyang Q, Wu J, Jiang Z, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem. 2017;42(2):651–659. doi: 10.1159/000477883
  178. Paim LR, Schreiber R, de Rossi G, et al. Circulating microRNAs, vascular risk, and physical activity in spinal cord-injured subjects. J Neurotrauma. 2019;36(6):845–852. doi: 10.1089/neu.2018.5880
  179. Pandi G, Nakka VP, Dharap A, et al. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One. 2013;8(3): e58039. doi: 10.1371/journal.pone.0058039
  180. Park C, Rosenblat JD, Brietzke E, et al. Stress, epigenetics and depression: a systematic review. Neurosci Biobehav Rev. 2019;102:139–152. doi: 10.1016/j.neubiorev.2019.04.010
  181. Park SM, Jung HY, Kim TD, et al. Distinct roles of the N-terminal-binding domain and the C-terminal-solubilizing domain of alpha-Synuclein, a molecular chaperone. Biol Chem. 2002;277(32): 28512–28520. doi: 10.1074/jbc.M111971200
  182. Peng XM, Tehranian R, Dietrich P, et al. Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci. 2005;118(15): 3523–3530. doi: 10.1242/jcs.02481
  183. Petkovic S, Muller S. Synthesis and engineering of circular RNAs. In: C. Dieterich, A. Papantonis editors. Circular RNAs. Methods in Molecular Biology. Vol. 1724. New York: Humana Press, 2018. P. 167–180. doi: 10.1007/978-1-4939-7562-4_14
  184. Parkinson J. An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci. 2002;14(2):223–236. doi: 10.1176/jnp.14.2.223
  185. Piwecka M, Glazar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357(6357):eaam8526. doi: 10.1126/science.aam8526
  186. Pressman PS, Miller BL. Diagnosis and management of behavioral variant frontotemporal dementia. Biol Psychiatry. 2014;75(7):574–581. doi: 10.1016/j.biopsych.2013.11.006
  187. Prusiner SB, Woerman AL, Mordes DA, et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. PNAS USA. 2015;112(38):E5308–E5317. doi: 10.1073/pnas.1514475112
  188. Qian H, Kang X, Hu J, et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature. 2020;582(7813):550–556. doi: 10.1038/s41586-020-2388-4
  189. Quarrell OW, Nance MA, Nopoulos P, et al. Managing juvenile Huntington’s disease. Neurodegener Dis Manag. 2013;3(3):nmt.13.18. doi: 10.2217/nmt.13.18
  190. Qin C, Liu CB, Yang DG, et al. Circular rna expression alteration and bioinformatics analysis in rats after traumatic spinal cord injury. Front Mol Neuroscience. 2018;11:497. doi: 10.3389/fnmol.2018.00497
  191. Rаdеmakers R, Hutton М. The genetics of frontotemporal lobar degeneration. Curr Neurol Neurosci Rep. 2007;7(5):434–442. doi: 10.1007/s11910-007-0067-6
  192. Ravnik-Glavač M, Glavač D. Circulating RNAs as potential biomarkers in amyotrophic lateral sclerosis. Int J Mol Sci. 2020;21(5):1714. doi: 10.3390/ijms21051714
  193. Redell JB, Moore AN, Ward NH, et al. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma. 2010;27(12):2147–2156. doi: 10.1089/neu.2010.1481
  194. Rodriguez-Araujo G, Nakagami H, Hayashi H, et al. Alpha-synuclein elicits glucose uptake and utilization in adipocytes through the Gab1/PI3K/Akt transduction pathway. Cell Mol Life Sci. 2013;70(6):1123–1133. doi: 10.1007/s00018-012-1198-8
  195. Rodriguez-Araujo G, Nakagami H, Takami Y, et al. Low alpha-synuclein levels in the blood are associated with insulin resistance. Sci Rep. 2015;5(1):12081. doi: 10.1038/srep12081
  196. Roy S, Kanda M, Nomura S, et al. Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer. Mol Cancer. 2022;21(1):42. doi: 10.1186/s12943-022-01527-7
  197. Rybak-Wolf A, Plass M. RNA dynamics in Alzheimer’s disease. Molecules. 2021;26(17):5113. doi: 10.3390/molecules26175113
  198. Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–885. doi: 10.1016/j.molcel.2015.03.027
  199. Ruipérez V, Darios F, Davletov B. Alpha-synuclein, lipids and Parkinson’s disease. Prog Lipid Res. 2010;49(4):420–428. doi: 10.1016/j.plipres.2010.05.004
  200. Sabirzhanov B, Stoica BA, Zhao Z, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23(4):654–668. doi: 10.1038/cdd.2015.132
  201. Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9:e1003777. doi: 10.1371/journal.pgen.1003777
  202. Satterstrom FK, Kosmicki JA, Wang J, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180(3):568–584. e523. doi: 10.1016/j.cell.2019.12.036
  203. Schafferer S, Khurana R, Refolo V, et al. Regulatory network precede motor symptoms in a mouse model of multiple system atrophy: Clinical implications. PLoS One. 2016;11(3):e0150705. doi: 10.1371/journal.pone.0150705
  204. Schultz SK, Andreasen NC. Schizophrenia. Lancet. 1999;353(9162):1425–1430. doi: 10.1016/S0140-6736(98)07549-7
  205. Shang Y, Huang EJ. Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res. 2016;1647:65–78. doi: 10.1016/j.brainres.2016.03.036
  206. Shao L, Jiang G-T, Yang X-L, et al. Silencing of circIgf1r plays a protective role in neuronal injury via regulating astrocyte polarization during epilepsy. FASEB J. 2021;35(2): e21330. doi: 10.1096/fj.202001737RR
  207. Sharmа А, Lyashchenkо АK, Lu L, et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Communun. 2016;7:10465. doi: 10.1038/ncomms10465
  208. Sharma SK, Chorell E, Steneberg P, et al. Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner. Sci Rep. 2015;5(1):12531. doi: 10.1038/srep12531
  209. Shi Y, Song R, Wang Z, et al. Potential clinical value of circular RNAs as peripheral biomarkers for the diagnosis and treatment of major depressive disorder. EBioMedicine. 2021;66:103337. doi: 10.1016/j.ebiom.2021;66:103337
  210. Shi Z, Chen T, Yao Q, et al. The circular RNA ciRS-7 promotes APP and BACE1 degradation in an NF-kappaB-dependent мanner. Febs J. 2017;284(7):1096–1109. doi: 10.1111/febs.14045
  211. Singh M, Dwibedy SLL, Biswal SR, et al. Circular RNA: A novel and potential regulator in pathophysiology of schizophrenia. Metab Brain Dis. 2022;37(5):1309–1316. doi: 10.1007/s11011-022-00978-7
  212. Snowden JS, Harris JM, Thompson JC, et al. Semantic dementia and the left and right temporal lobes. Cortex. 2018;107:188–203. doi: 10.1016/j.cortex.2017.08.024
  213. Sierksma A, Escott-Price V, De Strooper B. Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science. 2020;370(6512):61–66. doi: 10.1126/science.abb8575
  214. Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–150. doi: 10.1038/nrneurol.2017.188
  215. Szabo L, Morey R, Palpant NJ, et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 2015;16:126. doi: 10.1186/s13059-015-0690-5
  216. Tan G, Wang L, Liu Y, et al. The alterations of circular RNA expression in plasma exosomes from patients with schizophrenia. J Cell Physiol. 2021;236(1):458–467. doi: 10.1002/jcp.29873
  217. Tang M, Lv Y. The role of N6-methyladenosine modified circular RNA in pathophysiological processes. Int J Biol Sci. 2021;17(9): 2262–2277. doi: 10.7150/ijbs.60131
  218. Venø MT, Hansen TB, Venø ST, et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 2015;16:245. doi: 10.1186/s13059-015-0801-3
  219. Verheijen BM, Pasterkamp RJ. Commentary: FUS affects circular RNA expression in murine embryonic stem cell-derived моtor neurons. Front Mol Neurosci. 2017;10:412. doi: 10.3389/fnmol.2017.00412
  220. Vijiaratnam N, Simuni T, Bandmann O, et al. Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol. 2021;20(7):559–572. doi: 10.1016/S1474-4422(21)00061-2
  221. Visanji NP, Brooks PL, Hazrati LN, Lang AE. The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathol Commun. 2013;1:2. doi: 10.1186/2051-5960-1-2
  222. Wang H, Li Z, Gao J, Liao Q. Circular RNA circPTK2 regulates oxygen-glucose deprivation-activated microglia-induced hippocampal neuronal apoptosis via miR-29b-SOCS-1-JAK2/STAT3-IL-1β signaling. Int J Biol Macromol. 2019;129:488–496. doi: 10.1016/j.ijbiomac.2019.02.041
  223. Wang S, Latallo MJ, Zhang Z, et al. Nuclear export and translation of circular repeat-containing intronic RNA in C9ORF72-ALS/FTD. Nat Commun. 2021;12(1):4908. doi: 10.1038/s41467-021-25082-9
  224. Wang W, Lv R, Zhang J, Liu Y. circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson’s disease. Mol Med Rep. 2021;24(1):540. doi: 10.3892/mmr.2021.12179
  225. Wang Z, Xu P, Chen B, et al. Identifying circRNA-associated-ceRNA networks in the hippocampus of Abeta1-42-induced Alzheimer’s disease-like rats using microarray analysis. Aging (Albany NY). 2018;10(4):775–788. doi: 10.18632/aging.101427
  226. Waters S, Tedroff J, Ponten H, et al. Pridopidine: Overview of pharmacology and rationale for its use in Huntington’s disease. J Huntingtons Dis. 2018;7(1):1–16. doi: 10.3233/JHD-170267
  227. Whitwell JL, Przybelski SA, Weigang SD, et al. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain. 2009;132(11):2932–2946. doi: 10.1093/brain/awp232
  228. Wei H, Yuan Y, Liu S, et al. Detection of circulating miRNA levels in schizophrenia. Am J Psychiatry. 2015;172(11):1141–1147. doi: 10.1176/appi.ajp.2015.14030273
  229. Witt SN. Molecular chaperones, α-synuclein, and neurodegeneration. Mol Neurobiol. 2013;47(2):552–560. doi: 10.1007/s12035-012-8325-2
  230. Wen G, Zhou T, Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell. 2020;12(12):911–946. doi: 10.1007/s13238-020-00799-3
  231. Wu F, Han B, Wu S, et al. Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335–3p/TIPARP. J Neurosci. 2019;39(37):7369–7393. doi: 10.1523/JNEUROSCI.0299-19.2019
  232. Xiao W, Li J, Hu J, et al. Circular RNAs in cell cycle regulation: Mechanisms to clinical significance. Cell Prolif. 2021;54(12):e13143. doi: 10.1111/cpr.13143
  233. Xie B-S, Wang Y-q, Lin Y, et al. Circular RNA expression profiles alter significantly after traumatic brain injury in rats. J Neurotrauma. 2018;35(14):1659–1666. doi: 10.1089/neu.2017.5468
  234. Yamasaki TR, Holmes BB, Furman JL, et al. Parkinson’s disease and multiple system atrophy have distinct alpha-synuclein seed characteristics. J Biol Chem. 2019;294(3):1045–1058. doi: 10.1074/jbc.RA118.004471
  235. Yang K, Zeng L, Ge A, et al. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol. 2022;13:930171. doi: 10.3389/fimmu.2022.930171
  236. Yang L, Zhang J, Kamelgarn M, et al. Subcellular localization and RNAs determine FUS architecture in different cellular compartments. Hum Mol Genet. 2015;24(18):5174–5183. doi: 10.1093/hmg/ddv239
  237. Yang R, Xu B, Yang B, et al. Non-coding RNAs: The extensive and interactive regulators of the blood-brain barrier permeability. RNA Biol. 2021;18(S1):108–116. doi: 10.1080/15476286.2021.1950465
  238. Yang W, Wang X, Duan C, et al. Alpha-synuclein overexpression increases phospho-protein phosphatase 2A levels via formation of calmodulin/Src complex. Neurochem Int. 2013;63(3):180–194. doi: 10.1016/j.neuint.2013.06.010
  239. Yao G, Niu W, Zhu X, et al. hsa_circRNA_104597: a novel potential diagnostic and therapeutic biomarker for schizophrenia. Biomark Med. 2019;13(5):331–340. doi: 10.2217/bmm-2018-0447
  240. Yoon G, Cho KA, Song J, Kim Y-K. Transcriptomic analysis of high fat diet fed mouse brain cortex. Front Gen. 2019;10:83. doi: 10.3389/fgene.2019.00083
  241. You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015;18(4):603–610. doi: 10.1038/nn.3975
  242. Zamanpoor M. Schizophrenia in a genomic era: a review from the pathogenesis, genetic and environmental etiology to diagnosis and treatment insights. Psychiatr Genet. 2020;30(1):1–9. doi: 10.1097/YPG.0000000000000245
  243. Zhang M, Deng Y, Luo Y, et al. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J Neurochem. 2012;120(6):1129–1138. doi: 10.1111/j.1471-4159.2011.07644.x
  244. Zhang P, Rasheed M, Liang J, et al. Emerging potential of exosomal non-coding RNA in Parkinson’s disease: A Review. Front Aging Neurosci. 2022;14:819836. doi: 10.3389/fnagi.2022.819836
  245. Zhang Y, Du L, Bai Y, et al. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Моl Psychiatry. 2018;25(6):1175–1190. doi: 10.1038/s41380-018-0285-0
  246. Zhang Y, Xue W, Li X, et al. The biogenesis of nascent circular RNAs. Cell Rep. 2016;15(3):611–624. doi: 10.1016/j.celrep.2016.03.058
  247. Zhao XD, Lu YY, Guo H, et al. MicroRNA-7/NF-κB signaling regulatory feedback circuit regulates gastric carcinogenesis. J Cell Biol. 2015;210(4):613–627. doi: 10.1083/jcb.201501073
  248. Zhao Y, Аlexandrov PN, Jaber V, Lukiw WJ. Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Gеne. 2016;7(12):116. doi: 10.3390/genes7120116
  249. Zhao Z, Li X, Jian D, et al. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol. 2017;54(3):237–245. doi: 10.1007/s00592-016-0943-0
  250. Zhou Y, Gu C, Li J, et al. Aberrantly expressed long noncoding RNAs and genes in Parkinson’s disease. Neuropsychiatr Dis Treat. 2018;14:3219–3229. doi: 10.2147/NDT.S178435
  251. Zhou Z-B, Du D, Chen K-Z, et al. Differential expression profiles and functional predication of circular ribonucleic acid in traumatic spinal cord injury of rats. J Neurotrauma. 2019;36(15):2287–2297. doi: 10.1089/neu.2018.6366
  252. Zhu L, Zhao R, Huang L, et al. Circular RNA expression in the brain of a neonatal rat model of periventricular white matter damage. Cell Physiol Biochem. 2018;49(6):2264–2276. doi: 10.1159/000493829
  253. Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 2022;13(7):644. doi: 10.1038/s41419-022-05075-2
  254. Zhu Z, Wang S, Cao Q, Li G. CircUBQLN1 promotes proliferation but inhibits apoptosis and oxidative stress of hippocampal neurons in epilepsy via the miR-155-mediated SOX7 upregulation. J Mol Neurosci. 2021;71(9):1933–1943. doi: 10.1007/s12031-021-01838-2
  255. Zhuang Z-G, Zhang J-A, Luo H-L, et al. The circular RNA of peripheral blood mononuclear cells: Hsa_circ_0005836 as a new diagnostic biomarker and therapeutic target of active pulmonary tuberculosis. Mol Immunol. 2017;90:264–272. doi: 10.1016/j.molimm.2017.08.008
  256. Zhuo C-J, Hou W-H, Jiang D-G, et al. Circular RNAs in early brain development and their influence and clinical significance in neuropsychiatric disorders. Neural Regen Res. 2020;15(5):817–823. doi: 10.4103/1673-5374.268969
  257. Zurawska A, Mycko MP, Selmaj KW. Circular RNAs as a novel regulatory mechanism in мultiple sclerosis. J Neuroimmunology. 2019;334:576971. doi: 10.1016/j.jneuroim.2019.576971

Copyright (c) 2023 Shabanov P.D., Vashchenko V.I., Savelieva L.P., Romashova Y.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».