Кольцевые РНК — современный взгляд на молекулярный механизм неврологических заболеваний человека. Перспективы поиска новых терапевтических средств
- Авторы: Шабанов П.Д.1, Ващенко В.И.1, Савельева Л.П.1, Ромашова Ю.Е.1
-
Учреждения:
- Военно-медицинская академия им. С.М. Кирова
- Выпуск: Том 21, № 2 (2023)
- Страницы: 95-133
- Раздел: Научные обзоры
- URL: https://bakhtiniada.ru/RCF/article/view/146559
- DOI: https://doi.org/10.17816/RCF334925
- ID: 146559
Цитировать
Аннотация
У млекопитающих отдельные виды некодирующих РНК (нкРНК) содержатся в большом количестве и сильно экспрессированы в тканях мозга, более чем в других органах. В недавних исследованиях идентифицирован новый класс нкРНК, названный кольцевыми РНК (кольцРНК), которые происходят путем слияния экзонов или интронов или обоих интронов в ковалентно-замкнутые кольца. Кольцевые РНК являются также высокоэкспрессированными в тканях мозга человека и их уровень непрерывно увеличивается от эмбрионального до взрослого состояния. Хотя функциональное значение и механизм действия кольцРНК все еще активно исследуются, они, как уже выяснено, регулируют транскрипцию своих организменных генов и секвестрацию РНК-связывающих белков и микроРНК. Отдельные кольцРНК также осуществляют трансляцию своих транскриптов при формировании пептидов. Экспрессия и распространенность кольцРНК пространственно-временным образом локализованы в тканях нормального мозга. Изменения в экспрессии кольцРНК, как полагают, вызывают ряд нарушений, включая рост опухолей головного мозга, а также острые и хронические нейродегенеративные нарушения, сопровождающиеся ключевыми механизмами, такими как ангиогенез, нейронная пластичность, аутофагия, апоптоз и воспаление. Эти необычные особенности делают кольцРНК потенциально подходящими молекулярными биомаркерами, особенно при нейродегенеративных заболеваниях. Представленный обзор обобщает новые данные о кольцРНК, подчеркивая их роль в патогенезе основных нейродегенеративных расстройств: болезни Альцгеймера, болезни Паркинсона, бокового амиотрофического склероза, эпилепсии, шизофрении, лобно-височной деменции с учетом их потенциальной полезности в качестве диагностических биомаркеров.
Полный текст
Открыть статью на сайте журналаОб авторах
Петр Дмитриевич Шабанов
Военно-медицинская академия им. С.М. Кирова
Автор, ответственный за переписку.
Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-код: 8974-7477
д-р мед. наук, профессор, заведующий отделом нейрофармакологии им. С.В. Аничкова
Россия, Санкт-ПетербургВладимир Иванович Ващенко
Военно-медицинская академия им. С.М. Кирова
Email: vladimir-vaschenko@yandex.ru
д-р биол. наук, ведущий научный сотрудник Центра крови и тканей
Россия, Санкт-ПетербургЛидия Павловна Савельева
Военно-медицинская академия им. С.М. Кирова
Email: lidalab@rambler.ru
заведующая клинической лабораторией Центра крови и тканей
Россия, Санкт-ПетербургЮлия Евгеньевна Ромашова
Военно-медицинская академия им. С.М. Кирова
Email: pdshabanov@mail.ru
ORCID iD: 0000-0002-5771-0789
SPIN-код: 3921-7090
заведующая отделом Центра крови и тканей
Россия, Санкт-ПетербургСписок литературы
- Afanasieva OI, Ezhov MV, Pokrovsky SN. Antisense oligonucleotides and therapeutical monoclonal antibodies as a basement for novel biological lipidlowering drugs. Russian Journal of Cardiology. 2018;23(8): 99–109. (In Russ.) doi: 10.15829/1560-4071-2018-8-99-109
- Bozhkova ED, Balandina ОV, Konovalov АА. Autism spectrum disorders: state-of-the-art (Review). Modern Technologies in Medicine. 2020;12(2):111–120. (In Russ.) doi: 10.17691/stm2020.12.2.14
- Boyko AN, Gusev EI. Advances in multiple sclerosis research (Review). The Doctor. 2012;(5):9–15. (In Russ.)
- Vasenina EЕ, Veryugina NI, Levin OS. Modern concepts of diagnosis and treatment frontotemporal dementia. Sovremennaya terapiya v psikhiatrii i nevrologii. 2015;(3):26–34. (In Russ.)
- Vashchenko VI, Chuklovin AB, Shabanov PD. Circular RNAs in eukaryotic cells: origin, characteristics, mechanisms of molecular functioning in human malignant diseases. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(4):335–384. (In Russ.) doi: 10.17816/RCF204335-384
- Gulyaev SA. Specificity of biochemical mechanisms of excitation formation in symptomatic epilepsy (A review). Russian Journal of Child Neurology. 2011;6(1):31–38. (In Russ.)
- Ershova MV, Akhmadullina DR, Fedotova EYu, Illarioshkin SN. Current concept of multiple system atrophy. Aktual’nye voprosy nevrologii. 2018;(4):3–12. (In Russ.) doi: 10.24411/2071-5315-2018-12051
- Zuev VA. Immunology theory of Alzheimer disease pathogenesis: facts and hypothesis. Modern Problems of Science and Education. 2019;(4):28961. (In Russ.) doi: 10.17513/spno.28961
- Karlov VA. Evolution of LR. Zenkov. Epilepsy as a model for studying the CNS function. Epilepsy and paroxysmal conditions. 2018;10(3):79–86. (In Russ.)
- Klimenko LL, Skalny AV, Turna AA, et al. Metal-ligand homeostasis in etiopathogenesis of Alzheimer’s disease (Review). Microelements in Medicine. 2016;17(4):3–10. (In Russ.) doi: 10.19112/2413-6174-2016-17-4-3-10
- Klyushnikov SA. Huntington’s disease. L.O. Badalyan Neurological Journal. 2020;1(3):139–158. (In Russ.) doi: 10.17816/2686-8997-2020-1-3-139-158
- Krot KV. Optimizatsiya lekarstvennogo obespecheniya bol’nykh shizofreniei: regional’nye farmakoehpidemiologicheskie i farmakoehkonomicheskie aspekty [dissertation]. Khabarovsk, 2016. 186 p. (In Russ.)
- Mikhel DV. Bipolar disorder: An epidemic or a consequence of the medicalization of society? Vestnik of Saint Petersburg University. Sociology. 2018;11(1):51–65. (In Russ.) doi: 10.21638/spbu12.201.105
- Morozova AYu, Zubkov EA, Zorkina YaA, et al. Genetic aspects of schizophrenia. The Korsakov’s Journal of Neurology and Psychiatry. 2017;(6):126–132. (In Russ.) doi: 10.17116/jnevro201711761126-132
- Pal’tsev MA, Polyakova VO, Lin’kova NS, et al. Molekulyarno-kletochnye mekhanizmy bolezni Al’tsgeimera. Molecular medicine. 2016;14(6):3–10. (In Russ.)
- Panyukova AS. Statistics of mental disorders in the Russian Federation. SKIF. Voprosy studencheskoi nauki. 2019;(11): 589–595. (In Russ.)
- Pereverzev AP, Romanovskii RR, Shatalova NA, Ostroumova OD. Inflammaging: inflammation and oxidative stress as a cause of aging and cognitive decline. Medical Council. 2021;(4):48–58. (In Russ.) doi: 10.21518/2079-701X-2021-4-48-58
- Prozherina J. Modern insight into the problem of schizophrenia. REMEDIUM. 2018;(1–2):49–54. (In Russ.) doi: 10.21518/1561-5936-2018-1-2-49-54
- Razdorskaya VV, Voskresenskaya ON, Yudina GK. Parkinson’s disease in Russia: prevalence and incidence. Saratov Journal of Medical Scientific Research. 2016;12(3):379–384. (In Russ.)
- Stolyarov ID, editor. Rasseyannyi skleroz. Monoklonal’naya terapiya. Moscow: Meditsina-Inform, 2019. 240 p. (In Russ.)
- Simonova VV. Sovremennye vozmozhnosti issledovaniya kletochnykh i molekulyarnykh mekhanizmov bolezni Parkinsona. New technologies. 2018;(1):9–13. (In Russ.) doi: 10.24411/2071-5315-2018-12014
- Skvortsova VI, Levitskii GN, Zakharova MN. Nevrologiya: natsional’noe rukovodstvo. Kratkoe izdanie. Ed. by E.I. Guseva, A.N. Konovalova, A.B. Gekht. Moscow: GEOTAR-Meditsina, 2018. 688 p. (In Russ.)
- Stefanova NA, Kolosova NG. Evolution of understanding of Alzheimer’s disease pathogenesis. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(1):6–13. (In Russ.)
- Stoychev KR, Ivanov K, Kojuharov ChV, et al. Antypsychotics in schizophrenia treatment — Literature review. Human. Sport. Medicine. 2016;16(3):25–36. (In Russ.) doi: 10.14529/hsm160304
- Tappakhov AA, PopovaTE, NikolaevaTYa, et al. Epidemiology of Parkinson’s disease in the world and Russia. The Transbaikalian Bulletin. 2016;(4):151–159. (In Russ.)
- Shabanov PD, Orlov FA, Tutaeva VV, et al. Lekarstvennye sredstva, primenyaemye v gematologii: klassifikatsiya i opisanie preparatov. In: Rukavitsyn OA, editor. Ratsional’naya farmakoterapiya v gematologii. Moscow: Litterra, 2021. P. 549–782. (In Russ.)
- Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53. DOI: 10.1038 /nrn1824
- Ahmad R, Sportelli V, Ziller M, et al. Tracing early neurodevelopment in schizophrenia with induced pluripotent stem cells. Cells. 2018;7(9):140. doi: 10.3390/cells7090140
- Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. 2013;9:617–628. doi: 10.1038/nrneurol.2013.203
- Ansel A, Rosenzweig JP, Zisman PD, et al. Variation in gene expression in autism spectrum disorders: an extensive review of transcriptomic studies. Front Neurosci. 2016;10:601. doi: 10.3389/fnins.2016.00601
- Armakola M, Higgins MJ, Figley MD, et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet. 2012;44(12):1302–1309. doi: 10.1038/ng.2434
- Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66. doi: 10.1016/j.molcel.2014.08.019
- Bai Y, Zhang Y, Han B, et al. Circular RNA DLGAP4 Ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci. 2018;38(1):32–50. doi: 10.1523/JNEUROSCI.1348-17.2017
- Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 2015;61(1):221–230. doi: 10.1373/clinchem.2014.230433
- Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurology. 2019;27(1):27–42. doi: 10.1111/ene.14108
- Banote RK, Akel S, Zelano J. Blood biomarkers in epilepsy. Acta Neurologica Scandinavica. 2022;146(4):362–368. doi: 10.1111/ane.13616
- Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386(10004):1672–1682. doi: 10.1016/S0140-6736(15)00461-4
- Bartels T, Choi JG, Selkoe JS. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature. 2011;477(7362):107–110. doi: 10.1038/nature10324
- Bassett AS, Collins EJ, Nuttall SE, Honer WG. Positive and negative symptoms in families with schizophrenia. Schizophr Res. 1993;11(1):9–19. doi: 10.1016/0920-9964(93)90033-F
- Bateman RJ, Aisen PS, De Strooper, et al. Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s. Alzheimers Res Ther. 2011;3(1):1. doi: 10.1186/alzrt59
- Bates GP, Dorsey R, Gusella JF, et al. Huntington disease. Nat Rev Dis Primers. 2015;1:15005. doi: 10.1038/nrdp.2015.5
- Berge-Seidl V, Pihlstrøm L, Maple-Grødem J, et al. The GBA variant E326K is associated with Parkinson’s disease and explains a genome-wide association signal. Neurosci Lett. 2017;658:48–52. doi: 10.1016/j.neulet.2017.08.040
- Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: double trouble. Neuron. 2020;107(2):234–256. doi: 10.1016/j.neuron.2020.06.002
- Boldrini M, Santiago AN, Hen R, et al. Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacol. 2013;38(6):1068–1077. doi: 10.1038/npp.2013.5
- Bonelli RM, et al. Gentington. Circ Res. 2001;117(10):884–890. doi: 10.1002/mpr.106
- Brisinda D, Sorbo AR, Di Giacopo R, et al. Cardiovascular autonomic nervous system evaluation in Parkinson disease and multiple system atrophy. J Neurol Sci. 2014;336(1–2):197–202. doi: 10.1016/j.jns.2013.10.039
- Burré J, Sharma M, Tsetsenis T, et al. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329(5999):1663–1667. doi: 10.1126/science.1195227
- Burré J, Sharma M, Südhof TC. Alpha-synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. PNAS USA. 2014;111(40):E4274–E4283. doi: 10.1073/pnas.1416598111
- Cacquevel M, Aeschbach L, Houacine J, Fraering PC. Alzheimer’s disease-linked mutations in presenilin-1 result in a drastic loss of activity in purified γ-secretase complexes. PLoS One. 2012;7(4): e35133. doi: 10.1371/journal.pone.0035133
- Caprio FZ, Sorond FA. Cerebrovascular disease: Primary and secondary stroke prevention. Med Clin North Am. 2019;103(2):295–308. doi: 10.1016/j.mcna.2018.10.001
- Cardamone G, Paraboschi EM, Solda G, et al. Not only cancer: the long non-coding RNA MALAT1 affects the repertoire of alternatively spliced transcripts and circular RNAs in multiple sclerosis. Hum Mol Genet. 2018;28(9):1414–1428. doi: 10.1093/hmg/ddy438
- Cardno AG, Owen MJ. Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr Bull. 2014;40(3):504–515. doi: 10.1093/schbul/sbu016
- Cervera-Carles L, Dols-Icardo O, Molina-Porcel L, et al. Assessing circular RNAs in Alzheimer’s disease and frontotemporal lobar degeneration. Neurobiol Aging. 2020;92:7–11. doi: 10.1016/j.neurobiolaging.2020.03.017
- Charlson F, Van Ommeren M, Flaxman A, et al. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet. 2019;394(10194): 240–248. doi: 10.1016/S0140-6736(19)30934-1
- Chen BJ, Huang S, Janitz M. Changes in circular RNA expression patterns during human foetal brain development. Genomics. 2019;111(4):753–758. doi: 10.1016/j.ygeno.2018.04.015
- Chen BJ, Mills JD, Takenaka K, et al. Characterization of circular RNAs landscape in multiple system atrophy brain. J Neurochem. 2016;139(3):485–496. doi: 10.1111/jnc.13752
- Chen M, Lai X, Wang X, et al. Long non-coding RNAs and circular RNAs: Insights into microglia and astrocyte mediated neurological diseases. Front Mol Neurosci. 2021;14:745066. doi: 10.3389/fnmol.2021.745066
- Chen RHC, Wislet-Gendebien S, Samuel F, et al. α-synuclein membrane association is regulated by the Rab3a recycling machinery and presynaptic activity. J Biol Chem. 2013;288(11):7438–7449. doi: 10.1074/jbc.M112.439497
- Chen W, Schuman E. Circular RNAs in brain and other tissues: a functional enigma. Trends Neurosci. 2016;39(9):597–604. doi: 10.1016/j.tins.2016.06.006
- Chen Y-J, Chen C-Y, Mai T-L, et al. Genome-wide, integrative analysis of circular RNA dysregulation and the corresponding circular RNA-microRNA-mRNA regulatory axes in autism. Genome Res. 2020;30(3):375–391. doi: 10.1101/gr.255463.119
- Choi B-K, Choi M-G, Kim J-Y, et al. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. PNAS USA. 2013;110(10):4087–4092. doi: 10.1073/pnas.1218424110
- Corey DR. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat Neurosci. 2017;20(4):497–499. doi: 10.1038/nn.4508
- Cortés-López M, Miura P. Emerging functions of circular RNAs. Yale J Biol Med. 2016;89(4):527–537.
- Crump C, Sundquist K, Winkleby MA, et al. Comorbidities and mortality in bipolar disorder: a Swedish national cohort study. JAMA Psychiatry. 2013;70(9):931–939. doi: 10.1001/jamapsychiatry.2013.1394
- Cui X, Niu W, Kong L, et al. hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in Major depressive disorder. Biomark Med. 2016;10(9):943–952. doi: 10.2217/bmm-2016-0130
- D’Anca M, Buccellato FR, Fenoglio C, Galimberti D. Circular RNAs: emblematic players of neurogenesis and neurodegeneration. Int J Mol Sci. 2022;23(8):4134. doi: 10.3390/ijms23084134
- Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol. 2014;10(6):337–348. doi: 10.1038/nrneurol.2014.78
- Dharap A, Bowen K, Place R, et al. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 2009;29(4):675–687. doi: 10.1038/jcbfm.2008.157
- Dharap A, Nakka VP, Vemuganti R. Altered expression of PIWI RNA in the rat brain after transient focal ischemia. Stroke. 2011;42(4):1105–1109. doi: 10.1161/STROKEAHA.110.598391
- Dharap A, Nakka VP, Vemuganti R. Effect of focal ischemia on long noncoding RNAs. Stroke. 2012;43(10):2800–2802. doi: 10.1161/STROKEAHA.112.669465
- Dharap A, Pokrzywa C, Murali S, et al. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One. 2013;8(11): e79467. doi: 10.1371/journal.pone.0079467
- Dharap A, Pokrzywa C, Vemuganti R. Increased binding of stroke-induced long non-coding RNAs to the transcriptional coexpressors Sin3A and coREST. ASN Neuro. 2013;5(4):283–289. doi: 10.1042/AN20130029
- Dorostgou Z, Yadegar N, Dorostgou Z, et al. Novel insights into the role of circular RNAs in Parkinson disease: An emerging renaissance in the management of neurodegenerative diseases. J Neurosci Res. 2022;100(9):1775–1790. doi: 10.1002/jnr.25094
- Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol. 2009;10(12):1252–1259. doi: 10.1038/ni.1798
- Du Y, Yu Y, Hu Y, et al. Genome-wide, integrative analysis implicates exosome-derived microrna dysregulation in schizophrenia. Schizophr Bull. 2019;45(6):1257–1266. doi: 10.1093/schbul/sby191
- Duan X, Li L, Gan J, et al. Identification and functional аnalysis of circular RNAs induced in rats by middle cerebral artery occlusion. Gen. 2019;701:139–145. doi: 10.1016/j.gene.2019.03.053
- Dube U, Del-Aguila JL, Li Z, et al. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci. 2019;22(11):1903–1912. doi: 10.1038/s41593-019-0501-5
- Dutta R, Trapp BD. Relapsing and progressive forms of multiple sclerosis: insights from pathology. Сurr Opin Neurol. 2014;27(3): 271–278. doi: 10.1097/WCO.0000000000000094
- Ebbesen KK, Kjems J, Hansen TB. Circular RNAs: Identification, biogenesis and function. Biochim Biophys Acta. 2016;1859(1): 163–168. doi: 10.1016/j.bbagrm.2015.07.007
- Emamzadeh FN. Alpha-synuclein structure, functions, and interactions. J Res Med Sci. 2016;21:29. doi: 10.4103/1735–1995.181989
- Emmanouilidou E, Minakaki G, Keramioti MV, et al. GABA transmission via ATP-dependent K+ channels regulates α-synuclein secretion in mouse striatum. Brain. 2016;139(3):871–890. doi: 10.1093/brain/awv403
- Enuka Y, Lauriola M, Feldman ME, et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44(3):1370–1383. doi: 10.1093/nar/gkv1367
- Errichelli L, Dini Modigliani S, Laneve P, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 2017;8:14741. doi: 10.1038/ncomms14741
- Fang Y, Wang X, Li W, et al. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. Int J Mol Med. 2018;42(4):1865–1874. doi: 10.3892/ijmm.2018.3783
- Fеnоgliо С, Scarpini E, Galimberti D. Epigenetic regulatory modifications in genetic and sporadic frontotemporal dementia. Expert Rev Neuroth. 2018;18(6):469–475. doi: 10.1080/14737175.2018.1481389
- Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: A phase 2, openlabel, dose-escalation study. Lancet. 2016;388(10063):3017–3026. DOI: 10.1016 / S0140-6736(16)31408-8
- Fu Y, He W, Zhou C, et al. Bioinformatics analysis of circRNA expression and construction of “circRNA-miRNA-mRNA” competing endogenous RNAs networks in bipolar disorder patients. Front Genet. 2021;12:718976. doi: 10.3389/fgene.2021.718976
- Gao FB, Richter JD, Cleveland DW. Rethinking unconventional translation in neurodegeneration. Cell. 2017;171(5):994–1000. doi: 10.1016/j.cell.2017.10.042
- GBD2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1789–1858. doi: 10.1016/S0140-6736(18)32279-7
- Geng X, Lou H, Wang J, et al. α-synuclein binds the K (ATP) channel at insulin-secretory granules and inhibits insulin secretion. Am J Physiol Endocrinol Metab. 2011;300(2):E276–E286. doi: 10.1152/ajpendo.00262.2010
- Ghafouri-Fard S, Badrlou E, Tahori M, et al. A Comprehensive review on the role of non-coding rnas in the pathophysiology of bipolar disorder. Mol Sci. 2022;22(10):5156. doi: 10.3390/ijms22105156
- Gokool A, Anwar F, Voineagu I. The landscape of circular RNA expression in the human brain. Biol Psychiatry. 2020;87(3):294–304. doi: 10.1016/j.biopsych.2019.07.029
- Gonda X, Petschner P, Eszlari N, et al. Genetic variants in major depressive disorder: from pathophysiology to therapy. Pharmacol Therapeut. 2019;194:22–43. doi: 10.1016/j.pharmthera.2018.09.002
- Greenway MJ, Andersen PM, Russ C, et al. ANG mutations segregate with familial and “sporadic” amyotrophic lateral sclerosis. Nat Genet. 2006;38(4):411–413. doi: 10.1038/ng1742
- Grove J, Ripke S, Als TD, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51(3):431–444. doi: 10.1038/s41588-019-0344-8
- Gruner H, Cortes-Lopez M, Cooper DA, et al. CircRNA accumulation in the aging mouse brain. Sci Rep. 2016;6:38907. doi: 10.1038/srep38907
- Haeusler AR, Donnelly CJ, Rothstein JD. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat Rev Neurosci. 2016;17(6):383–395. doi: 10.1038/nrn.2016.38
- Han B, Zhang Y, Zhang Y, et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy. 2018;14(7):1164–1184. doi: 10.1080/15548627.2018.1458173
- Hanan M, Soreq H, Kadener S. CircRNAs in the brain. RNA Biol. 2017;14(8):1028–1034. doi: 10.1080/15476286.2016.1255398
- Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441): 384–388. doi: 10.1038/nature11993
- Harciarek M, Cosentino S. Language, executive function and social cognition in the diagnosis of frontotemporal dementia syndromes. Int Rev Psychiatry. 2013;25(2):178–196. doi: 10.3109/09540261.2013.763340
- Hayes JF, Miles J, Walters K, et al. A systematic review and meta-analysis of premature mortality in bipolar affective disorder. Acta Psychiatr Scand. 2015;131(6):417–425. doi: 10.1111/acps.12408
- Henley SMD, Wild EJ, Hobbs NZ, et al. Whole-brain atrophy as a measure of progression in premanifest and early Huntington’s disease. Mov Disord. 2009;24(6):932–936. doi: 10.1002/mds.22485
- Hofmann JW, Seeley WW, Huang EJ. RNA binding proteins and the pathogenesis of frontotemporal lobar degeneration. Ann Rev Pathol. 2019;14:469–495. doi: 10.1146/annurev-pathmechdis-012418-012955
- Holdt LM, Kohlmaier A, Teupser D. Circular RNAs as therapeutic agents and targets. Front Physiol. 2018;9:1262. doi: 10.3389/fphys.2018.01262
- Huang J-L, Xu Z-H, Yang S-M, et al. Identification of differentially expressed profiles of Alzheimer’s disease Associated Circular RNAs in a Panax notoginseng saponins-treated Alzheimer’s disease mouse model. Comput Struct Biotechnol J. 2018;16:523–531. doi: 10.1016/j.csbj.2018.10.010
- Huang R, Zhang Y, Bai Y, et al. N6-methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors. Biol Psych. 2020;88(5):392–404. doi: 10.1016/j.biopsych.2020.02.018
- Huang Y, Wang Y, Wang H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psych. 2019;6(3):211–224. doi: 10.1016/S2215-0366(18)30511-X
- Huang Z-K, Yao F-Y, Xu J-Q, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from active tuberculosis patients. Cell Physiol Biochem. 2018;45(3):1230–1240. doi: 10.1159/000487454
- Idda ML, Munk R, Abdelmohsen K, Gorospe M. Noncoding RNAs in Alzheimer’s disease. Wiley Interdiscip Rev RNA. 2018;9(2): e1463. doi: 10.1002/wrna.1463
- Iparraguirre L, Alberro A, Hansen TB, et al. Profiling of plasma extracellular vesicle transcriptome reveals that circRNAs are prevalent and differ between multiple sclerosis patients and healthy controls. Biomedicines. 2021;9(12):1850. doi: 10.3390/biomedicines9121850
- Jiang L, Li H, Fan Z, et al. Circular RNA expression profiles in neonatal rats following hypoxic-ischemic brain damage. Int J Mol Med. 2019;43(4):1699–1708. doi: 10.3892/ijmm.2019.4111
- Jiang Y-J, Cao S-Q, Gao L-B, et al. Circular ribonucleic acid expression profile in mouse cortex after traumatic brain injury. J Neurotrauma. 2019;36(7):1018–1028. doi: 10.1089/neu.2018.5647
- Jin H, Kanthasamy A, Ghosh A, et al. α-synuclein negatively regulates protein kinase Cd expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity. J Neurosci. 2011;31(6):2035–2051. doi: 10.1523/JNEUROSCI.5634-10.2011
- Junn E, Lee K-W, Jeong BS, et al. Repression of alpha-synuclein expression and toxicity by microRNA-7. PNAS USA. 2009;106(31):13052–13057. doi: 10.1073/pnas.0906277106
- Karch CM, Jeng AT, Nowotny P, et al. Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease. PLoS One. 2012;7(11): e50976. doi: 10.1371/journal.pone.0050976
- Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of luxturna (and Zolgensma and Glybera): Where are we, and how did we get here? Ann Rev Virol. 2019;6(1):601–621. doi: 10.1146/annurev-virology-092818-015530
- Kim T, Mehta SL, Morris-Blanco KC, et al. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing alpha-synuclein. Sci Signal. 2018;11(560): eaat4285. doi: 10.1126/scisignal.aat4285.
- Kim TD, Paik SR, Yang CH, Kim J. Structural changes in alpha-synuclein affect its chaperone-like activity in vitro. Protein Sci. 2000;9(12):2489–2496. doi: 10.1110/ps.9.12.2489
- Knupp D, Miura P. CircRNA accumulation: A new hallmark of aging? Mech Ageing Dev. 2018;173:71–79. doi: 10.1016/j.mad.2018.05.001
- Koníčková D, Menšíková K, Tučková L, et al. Biomarkers of neurodegenerative diseases: biology, taxonomy, clinical relevance, and current research status. Biomedicines. 2022;10(7):1760. doi: 10.3390/biomedicines10071760
- Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74(6):1031–1044. doi: 10.1016/j.neuron.2012.05.009
- Kraus TFJ, Haider M, Spanner J, et al. Altered long noncoding RNA expression precedes the course of Parkinson’s disease — a preliminary report. Mol Neurobiol. 2017;54(4):2869–2877. doi: 10.1007/s12035-016-9854-x
- Kumar L, Shamsuzzama, Jadiya P, et al. Functional characterization of novel circular RNA molecule, circzip-2 and its synthesizing gene zip-2 in C. elegans model of Parkinson’s disease. Mol Neurobiol. 2018;55(8):6914–6926. doi: 10.1007/s12035-018-0903-5
- Kume K, Iwama H, Deguchi K, et al. Serum microRNA expression profiling in patients with multiple system atrophy. Mol Med Rep. 2018;17(1):852–860. doi: 10.3892/mmr.2017.7995
- Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–1208. doi: 10.1126/science.1166066
- Lagier-Tourenne C, Polymenidou M, Hutt KR, et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci. 2012;15(11):1488–1497. doi: 10.1038/nn.3230
- Lambert J-C, Grenier-Boley B, Harold D, et al. Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer’s disease. Mol Psychiatry. 2013;18(4):461–470. doi: 10.1038/mp.2012.14
- Lasda E, Parker R. Circular RNAs Co-Precipitate with extracellular vesicles: A possible mechanism for circRNA clearance. PLoS ONE. 2016;11(2): e0148407. doi: 10.1371/journal.pone.0148407
- Latchoumycandane C, Anantharam V, Kitazawa M, et al. Protein kinase Cdelta is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther. 2005;313(1):46–55. doi: 10.1124/jpet.104.078469
- Lee S, Mankhong S, Kang J-H. Extracellular vesicle as a source of Alzheimer ‘s biomarkers: Opportunities and challenges. Int J Mol Sci. 2019;20(7):1728. doi: 10.3390/ijms20071728
- Lee S-Y, Lu R-B, Wang L-J, et al. Serum miRNA as a possible biomarker in the diagnosis of bipolar II disorder. Sci Rep. 2020;10(1):1131. doi: 10.1038/s41598-020-58195-0
- Li H, Li K, Lai W, et al. Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta. 2018;480:17–25. doi: 10.1016/j.cca.2018.01.026
- Li J, Shi Q, Wang Q, et al. Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction. Neurosci Lett. 2019;701: 146–153. doi: 10.1016/j.neulet.2019.02.032
- Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–136. doi: 10.1016/j.cca.2015.02.018
- Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981–984. doi: 10.1038/cr.2015.82
- Li Z, Liu S, Li X, et al. Circular RNA in schizophrenia and depression. Front Psychiatry. 2020;11:392. doi: 10.3389/fpsyt.2020.00392
- Liao F, Zhu L, Yang J, et al. Whole transcriptome sequencing identified CircRNA Profiles and the related networks in schizophrenia. J Mol Neurosci. 2022;72:1622–1635. doi: 10.1007/s12031-022-02013-x
- Li J, Sun D, Pu W, et al. Circular RNAs in cancer: Biogenesis, function, and clinical significance. Trends Cancer. 2020;6(4):319–336. doi: 10.1016/j.trecan.2020.01.012
- Lipp A, Sandroni P, Ahlskog JE, et al. Prospective differentiation of multiple system atrophy from Parcinson disease with and without autonomic failure. Аrch Neurol. 2009;66(6):742–750. doi: 10.1001/archneurol.2009.71
- Liu C, Zhang C, Yang J, et al. Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget. 2017;8(49):86535–86547. doi: 10.18632/oncotarget.21238
- Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–95. doi: 10.1038/nchembio.1432
- Liu Q, Li Q, Zhang R, et al. circ-Pank1 promotes dopaminergic neuron neurodegeneration through modulating miR-7a-5p/α-syn pathway in Parkinson’s disease. Cell Death Disease. 2022;13(5):477. doi: 10.1038/s41419-022-04934-2
- Liu S, Zhang F, Shugart YY, et al. The early growth response protein 1-miR-30a-5p-neurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Transl Psychiatry. 2017;7(1): e998. doi: 10.1038/tp.2016.268
- Lukiw WJ. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Gen. 2013;4:307. doi: 10.3389/fgene.2013.00307
- Maass PG, Glažar P, Memczak S, et al. A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl). 2017;95(11):1179–1189. doi: 10.1007/s00109-017-1582-9
- MacDonald ME, Ambrose CM, Duyao MP, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–983. doi: 10.1016/0092-8674(93)90585-E
- Mackenzie IRA, Bigio EH, Ince PG, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007;61(5):427–434. doi: 10.1002/ana.21147
- Mackenzie IR, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 2010;9(10):995–1007. doi: 10.1016/S1474-4422(10)70195-2
- Mahmoudi E, Fitzsimmons C, Geaghan MP, et al. Circular RNA biogenesis is decreased in postmortem cortical gray matter in schizophrenia and may alter the bioavailability of associated miRNA. Neuropsychopharmacology. 2019;44(6):1043–1054. doi: 10.1038/s41386-019-0348-1
- Mahmoudi E, Green MJ, Cairns MJ. Dysregulation of circRNA expression in the peripheral blood of individuals with schizophrenia and bipolar disorder. J Mol Med (Berl). 2021;99(7):981–991. doi: 10.1007/s00109-021-02070-6
- Malhi GS, Mann JJ. Depression. Lancet. 2018;392(10161): 2299–2312. doi: 10.1016/S0140-6736(18)31948-2
- Majidinia M, Mihanfar A, Rahbarghazi R, et al. The roles of non-coding RNAs in Parkinson’s disease. Mol Biol Rep. 2016;43(11): 1193–1204. doi: 10.1007/s11033-016-4054-3
- Marfil-Marin E, Santamaría-Olmedo M, PerezGrovas-Saltijeral A, et al. circRNA regulates dopaminergic synapse, MAPK, and long-term depression pathways in Huntington disease. Mol Neurobiol. 2021;58(12):6222–6231. doi: 10.1007/s12035-021-02536-1
- Marques TM, Kuiperij HB, Bruinsma IB, et al. MicroRNAs in cerebrospinal fluid as potential biomarkers for Parkinson’s disease and multiple system atrophy. Mol Neurobiol. 2017;54(19):7736–7745. doi: 10.1007/s12035-016-0253-0
- Martinez J, Moeller I, Erdjument-Bromage H, et al. Parkinson’s disease-associated alpha-synuclein is a calmodulin substrate. J Biol Chem. 2003;278(19):17379–17387. doi: 10.1074/jbc.M209020200
- Mathis S, Le Masson G. RNA-targeted therapies and amyotrophic lateral sclerosis. Biomedicines. 2018;6(1):9. doi: 10.3390/biomedicines6010009
- McIntyre RS, Berk M, Briezke E, et al. Bipolar disorders. Lancet. 2020;396(10265):1841–1856. doi: 10.1016/SO140-6736(20)31544-0
- Meade RM, Fairlie DP, Mason JM. Alpha-synuclein structure and Parkinson’s disease — lessons and emerging principles. Mol Neurodegeneration. 2019;14(1):29. doi: 10.1186/s13024-019-0329-1
- Mehta SL, Dempsey RJ, Vemuganti R. Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol. 2020;186:101746. doi: 10.1016/j.pneurobio.2020.101746
- Mehta SL, Kim T, Vemuganti R. Long noncoding RNA FosDT promotes ischemic brain Injury by Interacting with REST-associated chromatin-modifying proteins. J Neurosci. 2015;35(50):16443–16449. doi: 10.1523/JNEUROSCI.2943–15.2015
- Mehta SL, Manhas N, Raghubir R. Моlecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54(1):34–66. doi: 10.1016/j.brainresrev.2006.11.003
- Mehta SL, Pandi G, Vemuganti R. Circular RNA expression profiles alter significantly in mouse brain after transient focal ischemia. Stroke. 2017;48(9):2541–2548. doi: 10.1161/STROKEAHA.117.017469
- Meissner L, Gallozzi M, Balbi M, et al. Temporal profile of MicroRNA expression in contused cortex after traumatic brain injury in mice. J Neurotrauma. 2016;33(8):713–720. doi: 10.1089/neu.2015.4077
- Xiao M-S, Ai Y, Wilusz JE. Biogenesis and functions of circular RNAs come into focus. Trends Cell Biol. 2019;30(3):226–240. doi: 10.1016/j.tcb.2019.12.004
- Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS ONE. 2015;10(10): e0141214. doi: 10.1371/journal.pone.0141214
- Mi Z, Zhongqiang C, Caiyun J, et al. Circular RNA detection methods: A minireview. Talanta. 2022;238(Pt 2):123066. doi: 10.1016/j.talanta.2021.123066
- Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: A phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12(5):435–442. doi: 10.1016/S1474-4422(13)70061-9
- Miller SJ, Campbell CE, Jimenez-Corea HA, et al. Neuroglial senescence, α-synucleinopathy, and the therapeutic potential of senolytics in Parkinson’s disease. Front Neurosci. 2022;16:824191. doi: 10.3389/fnins.2022.824191
- Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ. 2022;29(3):481–491. doi: 10.1038/s41418-022-00948-7
- Mo D, Li X, Raabe CA. The role of Aβ circRNA in Alzheimer’s disease: alternative mechanism of Aβ biogenesis from Aβ circRNA translation. bioRxiv. 2020;260968. doi: 10.1101/260968
- Mori K, Weng S-M, Arzberger T, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013;339(6125):1335–1338. doi: 10.1126/science.1232927
- Nedoluzhko A, Gruzdeva N, Sharko F, et al. The biomarker and therapeutic potential of circular RNAs in schizophrenia. Cells. 2020;9(10):2238. doi: 10.3390/cells9102238
- Neil EE, Bisaccia EK. Nusinersen: A novel antisense oligonucleotide for the treatment of spinal muscular atrophy. J Pediatr Pharmacol Ther. 2019;24(3):194–203. doi: 10.5863/1551-6776-24.3.194
- Nguyen LD, Chau RK, Kricheewsky AM. Smal molecule drugs targeting non-coding RNAs as treatments for Alzheimers disease and related dementias. Genes. 2021;12(12):2005. doi: 10.3390/genes12122005
- Ostrerova N, Petrucelli L, Farrer M, et al. Alpha-synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci. 1999;19(14):5782–5791. doi: 10.1523/JNEUROSCI.19-14-05782.1999
- Ouyang Q, Wu J, Jiang Z, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem. 2017;42(2):651–659. doi: 10.1159/000477883
- Paim LR, Schreiber R, de Rossi G, et al. Circulating microRNAs, vascular risk, and physical activity in spinal cord-injured subjects. J Neurotrauma. 2019;36(6):845–852. doi: 10.1089/neu.2018.5880
- Pandi G, Nakka VP, Dharap A, et al. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One. 2013;8(3): e58039. doi: 10.1371/journal.pone.0058039
- Park C, Rosenblat JD, Brietzke E, et al. Stress, epigenetics and depression: a systematic review. Neurosci Biobehav Rev. 2019;102:139–152. doi: 10.1016/j.neubiorev.2019.04.010
- Park SM, Jung HY, Kim TD, et al. Distinct roles of the N-terminal-binding domain and the C-terminal-solubilizing domain of alpha-Synuclein, a molecular chaperone. Biol Chem. 2002;277(32): 28512–28520. doi: 10.1074/jbc.M111971200
- Peng XM, Tehranian R, Dietrich P, et al. Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci. 2005;118(15): 3523–3530. doi: 10.1242/jcs.02481
- Petkovic S, Muller S. Synthesis and engineering of circular RNAs. In: C. Dieterich, A. Papantonis editors. Circular RNAs. Methods in Molecular Biology. Vol. 1724. New York: Humana Press, 2018. P. 167–180. doi: 10.1007/978-1-4939-7562-4_14
- Parkinson J. An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci. 2002;14(2):223–236. doi: 10.1176/jnp.14.2.223
- Piwecka M, Glazar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357(6357):eaam8526. doi: 10.1126/science.aam8526
- Pressman PS, Miller BL. Diagnosis and management of behavioral variant frontotemporal dementia. Biol Psychiatry. 2014;75(7):574–581. doi: 10.1016/j.biopsych.2013.11.006
- Prusiner SB, Woerman AL, Mordes DA, et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. PNAS USA. 2015;112(38):E5308–E5317. doi: 10.1073/pnas.1514475112
- Qian H, Kang X, Hu J, et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature. 2020;582(7813):550–556. doi: 10.1038/s41586-020-2388-4
- Quarrell OW, Nance MA, Nopoulos P, et al. Managing juvenile Huntington’s disease. Neurodegener Dis Manag. 2013;3(3):nmt.13.18. doi: 10.2217/nmt.13.18
- Qin C, Liu CB, Yang DG, et al. Circular rna expression alteration and bioinformatics analysis in rats after traumatic spinal cord injury. Front Mol Neuroscience. 2018;11:497. doi: 10.3389/fnmol.2018.00497
- Rаdеmakers R, Hutton М. The genetics of frontotemporal lobar degeneration. Curr Neurol Neurosci Rep. 2007;7(5):434–442. doi: 10.1007/s11910-007-0067-6
- Ravnik-Glavač M, Glavač D. Circulating RNAs as potential biomarkers in amyotrophic lateral sclerosis. Int J Mol Sci. 2020;21(5):1714. doi: 10.3390/ijms21051714
- Redell JB, Moore AN, Ward NH, et al. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma. 2010;27(12):2147–2156. doi: 10.1089/neu.2010.1481
- Rodriguez-Araujo G, Nakagami H, Hayashi H, et al. Alpha-synuclein elicits glucose uptake and utilization in adipocytes through the Gab1/PI3K/Akt transduction pathway. Cell Mol Life Sci. 2013;70(6):1123–1133. doi: 10.1007/s00018-012-1198-8
- Rodriguez-Araujo G, Nakagami H, Takami Y, et al. Low alpha-synuclein levels in the blood are associated with insulin resistance. Sci Rep. 2015;5(1):12081. doi: 10.1038/srep12081
- Roy S, Kanda M, Nomura S, et al. Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer. Mol Cancer. 2022;21(1):42. doi: 10.1186/s12943-022-01527-7
- Rybak-Wolf A, Plass M. RNA dynamics in Alzheimer’s disease. Molecules. 2021;26(17):5113. doi: 10.3390/molecules26175113
- Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–885. doi: 10.1016/j.molcel.2015.03.027
- Ruipérez V, Darios F, Davletov B. Alpha-synuclein, lipids and Parkinson’s disease. Prog Lipid Res. 2010;49(4):420–428. doi: 10.1016/j.plipres.2010.05.004
- Sabirzhanov B, Stoica BA, Zhao Z, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23(4):654–668. doi: 10.1038/cdd.2015.132
- Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9:e1003777. doi: 10.1371/journal.pgen.1003777
- Satterstrom FK, Kosmicki JA, Wang J, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180(3):568–584. e523. doi: 10.1016/j.cell.2019.12.036
- Schafferer S, Khurana R, Refolo V, et al. Regulatory network precede motor symptoms in a mouse model of multiple system atrophy: Clinical implications. PLoS One. 2016;11(3):e0150705. doi: 10.1371/journal.pone.0150705
- Schultz SK, Andreasen NC. Schizophrenia. Lancet. 1999;353(9162):1425–1430. doi: 10.1016/S0140-6736(98)07549-7
- Shang Y, Huang EJ. Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res. 2016;1647:65–78. doi: 10.1016/j.brainres.2016.03.036
- Shao L, Jiang G-T, Yang X-L, et al. Silencing of circIgf1r plays a protective role in neuronal injury via regulating astrocyte polarization during epilepsy. FASEB J. 2021;35(2): e21330. doi: 10.1096/fj.202001737RR
- Sharmа А, Lyashchenkо АK, Lu L, et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Communun. 2016;7:10465. doi: 10.1038/ncomms10465
- Sharma SK, Chorell E, Steneberg P, et al. Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner. Sci Rep. 2015;5(1):12531. doi: 10.1038/srep12531
- Shi Y, Song R, Wang Z, et al. Potential clinical value of circular RNAs as peripheral biomarkers for the diagnosis and treatment of major depressive disorder. EBioMedicine. 2021;66:103337. doi: 10.1016/j.ebiom.2021;66:103337
- Shi Z, Chen T, Yao Q, et al. The circular RNA ciRS-7 promotes APP and BACE1 degradation in an NF-kappaB-dependent мanner. Febs J. 2017;284(7):1096–1109. doi: 10.1111/febs.14045
- Singh M, Dwibedy SLL, Biswal SR, et al. Circular RNA: A novel and potential regulator in pathophysiology of schizophrenia. Metab Brain Dis. 2022;37(5):1309–1316. doi: 10.1007/s11011-022-00978-7
- Snowden JS, Harris JM, Thompson JC, et al. Semantic dementia and the left and right temporal lobes. Cortex. 2018;107:188–203. doi: 10.1016/j.cortex.2017.08.024
- Sierksma A, Escott-Price V, De Strooper B. Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science. 2020;370(6512):61–66. doi: 10.1126/science.abb8575
- Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–150. doi: 10.1038/nrneurol.2017.188
- Szabo L, Morey R, Palpant NJ, et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 2015;16:126. doi: 10.1186/s13059-015-0690-5
- Tan G, Wang L, Liu Y, et al. The alterations of circular RNA expression in plasma exosomes from patients with schizophrenia. J Cell Physiol. 2021;236(1):458–467. doi: 10.1002/jcp.29873
- Tang M, Lv Y. The role of N6-methyladenosine modified circular RNA in pathophysiological processes. Int J Biol Sci. 2021;17(9): 2262–2277. doi: 10.7150/ijbs.60131
- Venø MT, Hansen TB, Venø ST, et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 2015;16:245. doi: 10.1186/s13059-015-0801-3
- Verheijen BM, Pasterkamp RJ. Commentary: FUS affects circular RNA expression in murine embryonic stem cell-derived моtor neurons. Front Mol Neurosci. 2017;10:412. doi: 10.3389/fnmol.2017.00412
- Vijiaratnam N, Simuni T, Bandmann O, et al. Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol. 2021;20(7):559–572. doi: 10.1016/S1474-4422(21)00061-2
- Visanji NP, Brooks PL, Hazrati LN, Lang AE. The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathol Commun. 2013;1:2. doi: 10.1186/2051-5960-1-2
- Wang H, Li Z, Gao J, Liao Q. Circular RNA circPTK2 regulates oxygen-glucose deprivation-activated microglia-induced hippocampal neuronal apoptosis via miR-29b-SOCS-1-JAK2/STAT3-IL-1β signaling. Int J Biol Macromol. 2019;129:488–496. doi: 10.1016/j.ijbiomac.2019.02.041
- Wang S, Latallo MJ, Zhang Z, et al. Nuclear export and translation of circular repeat-containing intronic RNA in C9ORF72-ALS/FTD. Nat Commun. 2021;12(1):4908. doi: 10.1038/s41467-021-25082-9
- Wang W, Lv R, Zhang J, Liu Y. circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson’s disease. Mol Med Rep. 2021;24(1):540. doi: 10.3892/mmr.2021.12179
- Wang Z, Xu P, Chen B, et al. Identifying circRNA-associated-ceRNA networks in the hippocampus of Abeta1-42-induced Alzheimer’s disease-like rats using microarray analysis. Aging (Albany NY). 2018;10(4):775–788. doi: 10.18632/aging.101427
- Waters S, Tedroff J, Ponten H, et al. Pridopidine: Overview of pharmacology and rationale for its use in Huntington’s disease. J Huntingtons Dis. 2018;7(1):1–16. doi: 10.3233/JHD-170267
- Whitwell JL, Przybelski SA, Weigang SD, et al. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain. 2009;132(11):2932–2946. doi: 10.1093/brain/awp232
- Wei H, Yuan Y, Liu S, et al. Detection of circulating miRNA levels in schizophrenia. Am J Psychiatry. 2015;172(11):1141–1147. doi: 10.1176/appi.ajp.2015.14030273
- Witt SN. Molecular chaperones, α-synuclein, and neurodegeneration. Mol Neurobiol. 2013;47(2):552–560. doi: 10.1007/s12035-012-8325-2
- Wen G, Zhou T, Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell. 2020;12(12):911–946. doi: 10.1007/s13238-020-00799-3
- Wu F, Han B, Wu S, et al. Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335–3p/TIPARP. J Neurosci. 2019;39(37):7369–7393. doi: 10.1523/JNEUROSCI.0299-19.2019
- Xiao W, Li J, Hu J, et al. Circular RNAs in cell cycle regulation: Mechanisms to clinical significance. Cell Prolif. 2021;54(12):e13143. doi: 10.1111/cpr.13143
- Xie B-S, Wang Y-q, Lin Y, et al. Circular RNA expression profiles alter significantly after traumatic brain injury in rats. J Neurotrauma. 2018;35(14):1659–1666. doi: 10.1089/neu.2017.5468
- Yamasaki TR, Holmes BB, Furman JL, et al. Parkinson’s disease and multiple system atrophy have distinct alpha-synuclein seed characteristics. J Biol Chem. 2019;294(3):1045–1058. doi: 10.1074/jbc.RA118.004471
- Yang K, Zeng L, Ge A, et al. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol. 2022;13:930171. doi: 10.3389/fimmu.2022.930171
- Yang L, Zhang J, Kamelgarn M, et al. Subcellular localization and RNAs determine FUS architecture in different cellular compartments. Hum Mol Genet. 2015;24(18):5174–5183. doi: 10.1093/hmg/ddv239
- Yang R, Xu B, Yang B, et al. Non-coding RNAs: The extensive and interactive regulators of the blood-brain barrier permeability. RNA Biol. 2021;18(S1):108–116. doi: 10.1080/15476286.2021.1950465
- Yang W, Wang X, Duan C, et al. Alpha-synuclein overexpression increases phospho-protein phosphatase 2A levels via formation of calmodulin/Src complex. Neurochem Int. 2013;63(3):180–194. doi: 10.1016/j.neuint.2013.06.010
- Yao G, Niu W, Zhu X, et al. hsa_circRNA_104597: a novel potential diagnostic and therapeutic biomarker for schizophrenia. Biomark Med. 2019;13(5):331–340. doi: 10.2217/bmm-2018-0447
- Yoon G, Cho KA, Song J, Kim Y-K. Transcriptomic analysis of high fat diet fed mouse brain cortex. Front Gen. 2019;10:83. doi: 10.3389/fgene.2019.00083
- You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015;18(4):603–610. doi: 10.1038/nn.3975
- Zamanpoor M. Schizophrenia in a genomic era: a review from the pathogenesis, genetic and environmental etiology to diagnosis and treatment insights. Psychiatr Genet. 2020;30(1):1–9. doi: 10.1097/YPG.0000000000000245
- Zhang M, Deng Y, Luo Y, et al. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J Neurochem. 2012;120(6):1129–1138. doi: 10.1111/j.1471-4159.2011.07644.x
- Zhang P, Rasheed M, Liang J, et al. Emerging potential of exosomal non-coding RNA in Parkinson’s disease: A Review. Front Aging Neurosci. 2022;14:819836. doi: 10.3389/fnagi.2022.819836
- Zhang Y, Du L, Bai Y, et al. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Моl Psychiatry. 2018;25(6):1175–1190. doi: 10.1038/s41380-018-0285-0
- Zhang Y, Xue W, Li X, et al. The biogenesis of nascent circular RNAs. Cell Rep. 2016;15(3):611–624. doi: 10.1016/j.celrep.2016.03.058
- Zhao XD, Lu YY, Guo H, et al. MicroRNA-7/NF-κB signaling regulatory feedback circuit regulates gastric carcinogenesis. J Cell Biol. 2015;210(4):613–627. doi: 10.1083/jcb.201501073
- Zhao Y, Аlexandrov PN, Jaber V, Lukiw WJ. Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Gеne. 2016;7(12):116. doi: 10.3390/genes7120116
- Zhao Z, Li X, Jian D, et al. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol. 2017;54(3):237–245. doi: 10.1007/s00592-016-0943-0
- Zhou Y, Gu C, Li J, et al. Aberrantly expressed long noncoding RNAs and genes in Parkinson’s disease. Neuropsychiatr Dis Treat. 2018;14:3219–3229. doi: 10.2147/NDT.S178435
- Zhou Z-B, Du D, Chen K-Z, et al. Differential expression profiles and functional predication of circular ribonucleic acid in traumatic spinal cord injury of rats. J Neurotrauma. 2019;36(15):2287–2297. doi: 10.1089/neu.2018.6366
- Zhu L, Zhao R, Huang L, et al. Circular RNA expression in the brain of a neonatal rat model of periventricular white matter damage. Cell Physiol Biochem. 2018;49(6):2264–2276. doi: 10.1159/000493829
- Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 2022;13(7):644. doi: 10.1038/s41419-022-05075-2
- Zhu Z, Wang S, Cao Q, Li G. CircUBQLN1 promotes proliferation but inhibits apoptosis and oxidative stress of hippocampal neurons in epilepsy via the miR-155-mediated SOX7 upregulation. J Mol Neurosci. 2021;71(9):1933–1943. doi: 10.1007/s12031-021-01838-2
- Zhuang Z-G, Zhang J-A, Luo H-L, et al. The circular RNA of peripheral blood mononuclear cells: Hsa_circ_0005836 as a new diagnostic biomarker and therapeutic target of active pulmonary tuberculosis. Mol Immunol. 2017;90:264–272. doi: 10.1016/j.molimm.2017.08.008
- Zhuo C-J, Hou W-H, Jiang D-G, et al. Circular RNAs in early brain development and their influence and clinical significance in neuropsychiatric disorders. Neural Regen Res. 2020;15(5):817–823. doi: 10.4103/1673-5374.268969
- Zurawska A, Mycko MP, Selmaj KW. Circular RNAs as a novel regulatory mechanism in мultiple sclerosis. J Neuroimmunology. 2019;334:576971. doi: 10.1016/j.jneuroim.2019.576971
