Immune status and cytokine spectrum as predictive signs of the severity of the disease and the effectiveness of intensive care in patients with coronavirus infection COVID-19

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The pandemic caused by a new strain of SARS-CоV-2 coronavirus has swept the whole world, however, despite the developed strategic directions for the treatment of coronavirus infection and intensive research in all countries, effective methods for treating this severe pathology have not yet been created. The list of drugs against COVID-19 practically does not use compounds that affect the renin-angiotensin system, in the functioning of which the ACE2 coronavirus binding receptor plays a central role. It is assumed that the virus, causing a decrease in the density of ACE2 receptors, leads to disruption of RAS activity. This review presents current research on the response of the immune system to infection with the SARS-CoV-2 virus, describes adaptive and innate cellular mechanisms, and describes a number of predictors of severe COVID-19.

To write this review, a search was made in the PubMed database and the scientific electronic library eLibrary.ru. The selection of articles was carried out manually with the main goal of synthesizing data and describing the mechanisms of influence of SARS-CoV-2 on the renin-angiotensin system, and, as a result, on the activation of the adaptive and innate immune response. This review includes 53 publications, including methodological recommendations of the Ministry of Health of the Russian Federation, data from ongoing clinical trials and patents. Data from selected scientific sources were structured and visualized.

About the authors

Valentin F. Sadykov

Research Center for Obstetrics, Gynecology and Perinatology

Email: valentinsadykov@yandex.ru
ORCID iD: 0000-0002-3511-5292

anaesthesiologist

Russian Federation, Moscow

Rimma A. Poltavtseva

Research Center for Obstetrics, Gynecology and Perinatology

Email: rimpol@mail.ru
ORCID iD: 0000-0001-8625-9205

leading research associate

Russian Federation, Moscow

Alina V. Chaplygina

Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Email: shadowhao@yandex.ru
ORCID iD: 0000-0002-6351-1997

junior research associate

Russian Federation, Pushchino, Moscow Region

Natalia V. Bobkova

Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Author for correspondence.
Email: nbobkova@mail.ru
ORCID iD: 0000-0002-4114-687X
SPIN-code: 7807-1996

Dr. Sci. (Biol.), head, Laboratory of cell mechanisms of memory disorders

Russian Federation, Pushchino, Moscow Region

References

  1. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020 [Enternet]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020 (cited 2022 June 28)
  2. Qiu J. Covert coronavirus infections could be seeding new outbreaks. Nature. 2020.
  3. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7
  4. Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Care Med. 2020;46(4):586–590. doi: 10.1007/s00134-020-05985-9
  5. Nikitina IV, Donnikov AE, Krogh-Jensen OA, et al. The role of the renin-angiotensin system, immunological and genetic factors in children with COVID-19. Russian Bulletin of Perinatology and Pediatrics. 2020;65(4):16–26. doi: 10.21508/1027-4065-2020-65-4-16-26
  6. Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020;126(10):1456–1474. doi: 10.1161/CIRCRESAHA.120.317015
  7. Koka V, Huang XR, Chung AC, et al. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol. 2008;172(5):1174–1183. doi: 10.2353/ajpath.2008.070762
  8. Patel VB, Clarke N, Wang Z, et al. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS. J Mol Cell Cardiol. 2014;66:167–176. doi: 10.1016/j.yjmcc.2013.11.017
  9. Scott AJ, O’Dea KP, O’Callaghan D, et al. Reactive oxygen species and p38 mitogen-activated protein kinase mediate tumor necrosis factor α-converting enzyme (TACE/ADAM-17) activation in primary human monocytes. J Biol Chem. 2011;286(41):35466–35476. doi: 10.1074/jbc.M111.277434
  10. Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol. 2016;310(2): H137–H152. doi: 10.1152/ajpheart.00618.2015
  11. Santos RA, Simoes e Silva AC, Maric C, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA. 2003;100(14):8258–8263. doi: 10.1073/pnas.1432869100
  12. Jiang T, Gao L, Guo J, et al. Suppressing inflammation by inhibiting the NF-κB pathway contributes to the neuroprotective effect of angiotensin-(1–7) in rats with permanent cerebral ischaemia. Br J Pharmacol. 2012;167(7):1520–1532. doi: 10.1111/j.1476-5381.2012.02105.x
  13. Jackson L, Eldahshan W, Fagan SC, et al. Within the Brain: The Renin Angiotensin System. Int J Mol Sci. 2018;19(3):876. doi: 10.3390/ijms19030876
  14. Santos RAS, Ferreira AJ, Simões E Silva AC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1–7)-Mas axis. Exp Physiol. 2008;93(5):519–527. doi: 10.1113/expphysiol.2008.042002
  15. Verdecchia P, Cavallini C, Spanevello A, et al. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14–20. doi: 10.1016/j.ejim.2020.04.037
  16. Magrone T, Magrone M, Jirillo E. Focus on Receptors for Coronaviruses with Special Reference to Angiotensin-Converting Enzyme 2 as a Potential Drug Target — A Perspective. Endocr Metab Immune Disord Drug Targets. 2020;20(6):807–811. doi: 10.2174/1871530320666200427112902
  17. Wösten-van Asperen RM, Lutter R, Specht PA, et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1–7) or an angiotensin II receptor antagonist. J Pathol. 2011;225(4):618–627. doi: 10.1002/path.2987
  18. Savergnini SQ, Beiman M, Lautner RQ, et al. Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor. Hypertension. 2010;56(1):112–120. doi: 10.1161/HYPERTENSIONAHA.110.152942
  19. Santos RA, Campagnole-Santos MJ, Baracho NC, et al. Characterization of a new angiotensin antagonist selective for angiotensin-(1–7): evidence that the actions of angiotensin-(1–7) are mediated by specific angiotensin receptors. Brain Res Bull. 1994;35(4):293–298. doi: 10.1016/0361-9230(94)90104-x
  20. Patent US6476209. M. Glenn, M.W. Lubbers, J. Dekker. Polynucleotides, materials incorporating them, and methods for using them. https://patents.google.com/patent/US6476209B1/en (cited 2022 June 28)
  21. Tirupula KC, Desnoyer R, Speth RC, et al. Atypical signaling and functional desensitization response of MAS receptor to peptide ligands. PLoS One. 2014;9(7): e103520. doi: 10.1371/journal.pone.0103520
  22. ClinicalTrials.gov [Enternet]. Study of GSK2586881 on Acute Hypoxia and Exercise. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03000686?term=NCT03000686&draw=2&rank=1 (cited 2022 June 28)
  23. ClinicalTrials.gov [Enternet]. A Dose-escalation Study in Subjects With Pulmonary Arterial Hypertension (PAH). Available from: https://www.clinicaltrials.gov/ct2/show/NCT03177603?term=NCT03177603&draw=2&rank=1 (cited 2022 June 28)
  24. Wiemer G, Dobrucki LW, Louka FR, et al. AVE0991, a nonpeptide mimic of the effects of angiotensin-(1–7) on the endothelium. Hypertension. 2002;40(6):847–852. doi: 10.1161/01.hyp.0000037979.53963.8f
  25. Tao L, Qiu Y, Fu X, et al. Angiotensin-converting enzyme 2 activator diminazene aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-κB pathways in human retinal pigment epithelium. J Neuroinflammation. 2016;13:35. doi: 10.1186/s12974-016-0489-7
  26. Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234. doi: 10.1186/s13054-017-1823-x
  27. Fandiño J, Vaz AA, Toba L, et al. Liraglutide Enhances the Activity of the ACE-2/Ang(1–7)/Mas Receptor Pathway in Lungs of Male Pups from Food-Restricted Mothers and Prevents the Reduction of SP-A. Int J Endocrinol. 2018;2018:6920620. doi: 10.1155/2018/6920620
  28. Fandiño J, Vaz AA, Toba L, et al. A Novel Angiotensin-(1–7) Glycosylated Mas Receptor Agonist for Treating Vascular Cognitive Impairment and Inflammation-Related Memory Dysfunction. J Pharmacol Exp Ther. 2019;369(1):9–25. doi: 10.1124/jpet.118.254854
  29. Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier. bioRxiv. [Preprint]. 2020;2020.06.15:150912. doi: 10.1101/2020.06.15.150912
  30. Choy EH, De Benedetti F, Takeuchi T, et al. Translating IL-6 biology into effective treatments. Nat Rev Rheumatol. 2020;16(6):335–345. doi: 10.1038/s41584-020-0419-z
  31. Vremennye metodicheskie rekomendatsii. Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). 6th ed. Ministerstvo zdravookhraneniya Rossiiskoi Federatsii. 2020. 165 p.
  32. Rice GI, Thomas DA, Grant PJ, et al. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383(Pt 1):45–51. doi: 10.1042/BJ20040634
  33. Kreutz R, Algharably EAE, Azizi M, et al. Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc Res. 2020;116(10):1688–1699. doi: 10.1093/cvr/cvaa097
  34. Kreutz R, Algharably EAE, Azizi M, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87(5):1688–1699. doi: 10.1093/cvr/cvaa097
  35. Caruso-Neves C, Lara LS, Rangel LB, et al. Angiotensin-(1–7) modulates the ouabain-insensitive Na+-ATPase activity from basolateral membrane of the proximal tubule. Biochim Biophys Acta. 2000;1467(1):189–197. doi: 10.1016/s0005-2736(00)00219-4
  36. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047): 112–116. doi: 10.1038/nature03712
  37. Velavan TP, Meyer CG. Mild versus severe COVID-19: Laboratory markers. Int J Infect Dis. 2020;(95):304–307. doi: 10.1016/j.ijid.2020.04.061
  38. Izcovich A, Ragusa MA, Tortosa F, et al. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS One. 2020;15(11): e0241955. doi: 10.1371/journal.pone.0241955
  39. Assandri R, Buscarini E, Canetta C, et al. Laboratory Biomarkers Predicting COVID-19 Severity in the Emergency Room. Arch Med Res. 2020;51(6):598–599. doi: 10.1016/j.arcmed.2020.05.011
  40. Luporini RL, Rodolpho JMA, Kubota LT, et al. IL-6 and IL-10 are associated with disease severity and higher comorbidity in adults with COVID-19. Cytokine. 2021;(143):155507. doi: 10.1016/j.cyto.2021.155507
  41. Wan S, Yi Q, Fan S, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv. 2020. doi: 10.1101/2020.02.10.20021832
  42. Akbari H, Tabrizi R, Lankarani KB, et al. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Life Sci. 2020;(258):118167. doi: 10.1016/j.lfs.2020.118167
  43. Li M, Guo W, Dong Y, et al. Elevated Exhaustion Levels of NK and CD8+ T Cells as Indicators for Progression and Prognosis of COVID-19 Disease. Front Immunol. 2020;11:580237.
  44. Li M, Guo W, Dong Y, et al. Prediction Model Based on the Combination of Cytokines and Lymphocyte Subsets for Prognosis of SARS-CoV-2 Infection. J Clin Immunol. 2020;40(7):960–969. doi: 10.3389/fimmu.2020.580237
  45. Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763. doi: 10.1016/j.ebiom.2020.102763
  46. Becker RC. COVID-19 update: COVID-19-associated coagulopathy. J Thromb Thrombolysis. 2020;50(1):54–67. doi: 10.1007/s11239-020-02134-3
  47. Hu B, Guo H, Zhou P, et al. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–154. doi: 10.1038/s41579-020-00459-7
  48. Meizlish ML, Pine AB, Bishai JD, et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv. 2021;5(5):1164–1177. doi: 10.1182/bloodadvances.2020003568
  49. Meizlish ML, Pine AB, Bishai JD, et al. Development and validation of the ISARIC4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study. Lancet Respir Med. 2021;9(4):349–359. doi: 10.1182/bloodadvances.2020003568
  50. Knight SR, Ho A, Pius R, et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ. 2020;(370): m3339. doi: 10.1136/bmj.m3339
  51. Zhao J, Yang Y, Huang H, et al. Relationship Between the ABO Blood Group and the Coronavirus Disease 2019 (COVID-19) Susceptibility. Clin Infect Dis. 2021;73(2):328–331. doi: 10.1093/cid/ciaa1150
  52. Novelli A, Andreani M, Biancolella M, et al. HLA allele frequencies and susceptibility to COVID-19 in a group of 99 Italian patients. HLA. 2020;96(5):610–614. doi: 10.1111/tan.14047
  53. Angioni R, Sánchez-Rodríguez R, Munari F, et al. Age-severity matched cytokine profiling reveals specific signatures in COVID-19 patients. Cell Death Dis. 2020;11(11):957. doi: 10.1038/s41419-020-03151-z

Copyright (c) 2023 ECO-vector LLC



 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».