Иммунный статус и спектр цитокинов как прогностические признаки тяжести течения заболевания и эффективности интенсивной терапии пациентов с коронавирусной инфекцией COVID-19
- Авторы: Садыков В.Ф.1, Полтавцева Р.А.1, Чаплыгина А.В.2, Бобкова Н.В.2
-
Учреждения:
- Научный центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова
- Пущинский научный центр биологических исследований Российской академии наук
- Выпуск: Том 21, № 1 (2023)
- Страницы: 23-34
- Раздел: Научные обзоры
- URL: https://bakhtiniada.ru/RCF/article/view/131538
- DOI: https://doi.org/10.17816/RCF21123-34
- ID: 131538
Цитировать
Аннотация
Пандемия, вызванная новым штаммом коронавируса SARS-CоV-2, охватила весь мир, однако, несмотря на разработанные стратегические направления лечения коронавирусной инфекции и интенсивные исследования во всех странах, эффективных способов лечения этой тяжелейшей патологии до сих пор не создано. В перечне средств против COVID-19 практически не используются соединения, влияющее на ренин-ангиотензиновую систему, в функционировании которой рецептор связывания с коронавирусом ACE2 играет центральную роль. Предполагается, что вирус, вызывая снижение плотности ACE2-рецепторов, приводит к нарушению активности ренин-ангиотензиновой системы. В данном обзоре представлены современные исследования, посвященные ответу иммунной системы на заражение вирусом SARS-CоV-2, описаны адаптивные и врожденные клеточные механизмы, а также ряд предикторов тяжелого течения СOVID-19.
Для написания обзора проведен поиск в базе PubMed и научной электронной библиотеке eLibrary.ru. Отбор статей осуществлялся вручную с главной целью синтезировать данные и описать механизмы влияния SARS-CoV-2 на ренин-ангиотензиновую систему и, как следствие, на активацию адаптивного и врожденного иммунного ответа. В обзор включены 53 публикации, включая методические рекомендации Министерства здравоохранения Российской Федерации, данные текущих клинических испытаний и патентов. Данные из отобранных научных источников были структурированы и визуализированы.
Полный текст
Открыть статью на сайте журналаОб авторах
Валентин Фидаильевич Садыков
Научный центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова
Email: valentinsadykov@yandex.ru
ORCID iD: 0000-0002-3511-5292
врач – анестезиолог-реаниматолог
Россия, МоскваРимма Алексеевна Полтавцева
Научный центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова
Email: rimpol@mail.ru
ORCID iD: 0000-0001-8625-9205
вед. научн. сотр.
Россия, МоскваАлина Вадимовна Чаплыгина
Пущинский научный центр биологических исследований Российской академии наук
Email: shadowhao@yandex.ru
ORCID iD: 0000-0002-6351-1997
мл. научн. сотр.
Россия, ПущиноНаталья Викторовна Бобкова
Пущинский научный центр биологических исследований Российской академии наук
Автор, ответственный за переписку.
Email: nbobkova@mail.ru
ORCID iD: 0000-0002-4114-687X
SPIN-код: 7807-1996
канд. биол. наук, заведующая лабораторией клеточных механизмов патологии памяти
Россия, ПущиноСписок литературы
- WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020 [Enternet]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020 (cited 2022 June 28)
- Qiu J. Covert coronavirus infections could be seeding new outbreaks. Nature. 2020.
- Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7
- Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Care Med. 2020;46(4):586–590. doi: 10.1007/s00134-020-05985-9
- Nikitina IV, Donnikov AE, Krogh-Jensen OA, et al. The role of the renin-angiotensin system, immunological and genetic factors in children with COVID-19. Russian Bulletin of Perinatology and Pediatrics. 2020;65(4):16–26. doi: 10.21508/1027-4065-2020-65-4-16-26
- Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020;126(10):1456–1474. doi: 10.1161/CIRCRESAHA.120.317015
- Koka V, Huang XR, Chung AC, et al. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol. 2008;172(5):1174–1183. doi: 10.2353/ajpath.2008.070762
- Patel VB, Clarke N, Wang Z, et al. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS. J Mol Cell Cardiol. 2014;66:167–176. doi: 10.1016/j.yjmcc.2013.11.017
- Scott AJ, O’Dea KP, O’Callaghan D, et al. Reactive oxygen species and p38 mitogen-activated protein kinase mediate tumor necrosis factor α-converting enzyme (TACE/ADAM-17) activation in primary human monocytes. J Biol Chem. 2011;286(41):35466–35476. doi: 10.1074/jbc.M111.277434
- Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol. 2016;310(2): H137–H152. doi: 10.1152/ajpheart.00618.2015
- Santos RA, Simoes e Silva AC, Maric C, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA. 2003;100(14):8258–8263. doi: 10.1073/pnas.1432869100
- Jiang T, Gao L, Guo J, et al. Suppressing inflammation by inhibiting the NF-κB pathway contributes to the neuroprotective effect of angiotensin-(1–7) in rats with permanent cerebral ischaemia. Br J Pharmacol. 2012;167(7):1520–1532. doi: 10.1111/j.1476-5381.2012.02105.x
- Jackson L, Eldahshan W, Fagan SC, et al. Within the Brain: The Renin Angiotensin System. Int J Mol Sci. 2018;19(3):876. doi: 10.3390/ijms19030876
- Santos RAS, Ferreira AJ, Simões E Silva AC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1–7)-Mas axis. Exp Physiol. 2008;93(5):519–527. doi: 10.1113/expphysiol.2008.042002
- Verdecchia P, Cavallini C, Spanevello A, et al. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14–20. doi: 10.1016/j.ejim.2020.04.037
- Magrone T, Magrone M, Jirillo E. Focus on Receptors for Coronaviruses with Special Reference to Angiotensin-Converting Enzyme 2 as a Potential Drug Target — A Perspective. Endocr Metab Immune Disord Drug Targets. 2020;20(6):807–811. doi: 10.2174/1871530320666200427112902
- Wösten-van Asperen RM, Lutter R, Specht PA, et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1–7) or an angiotensin II receptor antagonist. J Pathol. 2011;225(4):618–627. doi: 10.1002/path.2987
- Savergnini SQ, Beiman M, Lautner RQ, et al. Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor. Hypertension. 2010;56(1):112–120. doi: 10.1161/HYPERTENSIONAHA.110.152942
- Santos RA, Campagnole-Santos MJ, Baracho NC, et al. Characterization of a new angiotensin antagonist selective for angiotensin-(1–7): evidence that the actions of angiotensin-(1–7) are mediated by specific angiotensin receptors. Brain Res Bull. 1994;35(4):293–298. doi: 10.1016/0361-9230(94)90104-x
- Patent US6476209. M. Glenn, M.W. Lubbers, J. Dekker. Polynucleotides, materials incorporating them, and methods for using them. https://patents.google.com/patent/US6476209B1/en (cited 2022 June 28)
- Tirupula KC, Desnoyer R, Speth RC, et al. Atypical signaling and functional desensitization response of MAS receptor to peptide ligands. PLoS One. 2014;9(7): e103520. doi: 10.1371/journal.pone.0103520
- ClinicalTrials.gov [Enternet]. Study of GSK2586881 on Acute Hypoxia and Exercise. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03000686?term=NCT03000686&draw=2&rank=1 (cited 2022 June 28)
- ClinicalTrials.gov [Enternet]. A Dose-escalation Study in Subjects With Pulmonary Arterial Hypertension (PAH). Available from: https://www.clinicaltrials.gov/ct2/show/NCT03177603?term=NCT03177603&draw=2&rank=1 (cited 2022 June 28)
- Wiemer G, Dobrucki LW, Louka FR, et al. AVE0991, a nonpeptide mimic of the effects of angiotensin-(1–7) on the endothelium. Hypertension. 2002;40(6):847–852. doi: 10.1161/01.hyp.0000037979.53963.8f
- Tao L, Qiu Y, Fu X, et al. Angiotensin-converting enzyme 2 activator diminazene aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-κB pathways in human retinal pigment epithelium. J Neuroinflammation. 2016;13:35. doi: 10.1186/s12974-016-0489-7
- Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234. doi: 10.1186/s13054-017-1823-x
- Fandiño J, Vaz AA, Toba L, et al. Liraglutide Enhances the Activity of the ACE-2/Ang(1–7)/Mas Receptor Pathway in Lungs of Male Pups from Food-Restricted Mothers and Prevents the Reduction of SP-A. Int J Endocrinol. 2018;2018:6920620. doi: 10.1155/2018/6920620
- Fandiño J, Vaz AA, Toba L, et al. A Novel Angiotensin-(1–7) Glycosylated Mas Receptor Agonist for Treating Vascular Cognitive Impairment and Inflammation-Related Memory Dysfunction. J Pharmacol Exp Ther. 2019;369(1):9–25. doi: 10.1124/jpet.118.254854
- Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier. bioRxiv. [Preprint]. 2020;2020.06.15:150912. doi: 10.1101/2020.06.15.150912
- Choy EH, De Benedetti F, Takeuchi T, et al. Translating IL-6 biology into effective treatments. Nat Rev Rheumatol. 2020;16(6):335–345. doi: 10.1038/s41584-020-0419-z
- Vremennye metodicheskie rekomendatsii. Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). 6th ed. Ministerstvo zdravookhraneniya Rossiiskoi Federatsii. 2020. 165 p.
- Rice GI, Thomas DA, Grant PJ, et al. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383(Pt 1):45–51. doi: 10.1042/BJ20040634
- Kreutz R, Algharably EAE, Azizi M, et al. Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc Res. 2020;116(10):1688–1699. doi: 10.1093/cvr/cvaa097
- Kreutz R, Algharably EAE, Azizi M, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87(5):1688–1699. doi: 10.1093/cvr/cvaa097
- Caruso-Neves C, Lara LS, Rangel LB, et al. Angiotensin-(1–7) modulates the ouabain-insensitive Na+-ATPase activity from basolateral membrane of the proximal tubule. Biochim Biophys Acta. 2000;1467(1):189–197. doi: 10.1016/s0005-2736(00)00219-4
- Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047): 112–116. doi: 10.1038/nature03712
- Velavan TP, Meyer CG. Mild versus severe COVID-19: Laboratory markers. Int J Infect Dis. 2020;(95):304–307. doi: 10.1016/j.ijid.2020.04.061
- Izcovich A, Ragusa MA, Tortosa F, et al. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS One. 2020;15(11): e0241955. doi: 10.1371/journal.pone.0241955
- Assandri R, Buscarini E, Canetta C, et al. Laboratory Biomarkers Predicting COVID-19 Severity in the Emergency Room. Arch Med Res. 2020;51(6):598–599. doi: 10.1016/j.arcmed.2020.05.011
- Luporini RL, Rodolpho JMA, Kubota LT, et al. IL-6 and IL-10 are associated with disease severity and higher comorbidity in adults with COVID-19. Cytokine. 2021;(143):155507. doi: 10.1016/j.cyto.2021.155507
- Wan S, Yi Q, Fan S, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv. 2020. doi: 10.1101/2020.02.10.20021832
- Akbari H, Tabrizi R, Lankarani KB, et al. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Life Sci. 2020;(258):118167. doi: 10.1016/j.lfs.2020.118167
- Li M, Guo W, Dong Y, et al. Elevated Exhaustion Levels of NK and CD8+ T Cells as Indicators for Progression and Prognosis of COVID-19 Disease. Front Immunol. 2020;11:580237.
- Li M, Guo W, Dong Y, et al. Prediction Model Based on the Combination of Cytokines and Lymphocyte Subsets for Prognosis of SARS-CoV-2 Infection. J Clin Immunol. 2020;40(7):960–969. doi: 10.3389/fimmu.2020.580237
- Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763. doi: 10.1016/j.ebiom.2020.102763
- Becker RC. COVID-19 update: COVID-19-associated coagulopathy. J Thromb Thrombolysis. 2020;50(1):54–67. doi: 10.1007/s11239-020-02134-3
- Hu B, Guo H, Zhou P, et al. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–154. doi: 10.1038/s41579-020-00459-7
- Meizlish ML, Pine AB, Bishai JD, et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv. 2021;5(5):1164–1177. doi: 10.1182/bloodadvances.2020003568
- Meizlish ML, Pine AB, Bishai JD, et al. Development and validation of the ISARIC4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study. Lancet Respir Med. 2021;9(4):349–359. doi: 10.1182/bloodadvances.2020003568
- Knight SR, Ho A, Pius R, et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ. 2020;(370): m3339. doi: 10.1136/bmj.m3339
- Zhao J, Yang Y, Huang H, et al. Relationship Between the ABO Blood Group and the Coronavirus Disease 2019 (COVID-19) Susceptibility. Clin Infect Dis. 2021;73(2):328–331. doi: 10.1093/cid/ciaa1150
- Novelli A, Andreani M, Biancolella M, et al. HLA allele frequencies and susceptibility to COVID-19 in a group of 99 Italian patients. HLA. 2020;96(5):610–614. doi: 10.1111/tan.14047
- Angioni R, Sánchez-Rodríguez R, Munari F, et al. Age-severity matched cytokine profiling reveals specific signatures in COVID-19 patients. Cell Death Dis. 2020;11(11):957. doi: 10.1038/s41419-020-03151-z
