Тучные клетки и нейровоспаление в патогенезе нервных и психических заболеваний
- Авторы: Григорьев И.П.1, Коржевский Д.Э.1
-
Учреждения:
- Институт экспериментальной медицины
- Выпуск: Том 21, № 2 (2021)
- Страницы: 7-24
- Раздел: Аналитический обзор
- URL: https://bakhtiniada.ru/MAJ/article/view/63228
- DOI: https://doi.org/10.17816/MAJ63228
- ID: 63228
Цитировать
Аннотация
В обзоре обобщены современные данные о роли нейровоспаления и тучных клеток в патогенезе нервных и психических заболеваний, таких как рассеянный склероз, болезнь Альцгеймера, болезнь Паркинсона, боковой амиотрофический склероз, депрессия, аутизм, мигрень, шизофрения и некоторые другие. Продемонстрирована вовлеченность нейровоспаления в патогенез многих из этих болезней. Участие тучных клеток в развитии нейровоспалительного процесса было показано с разной степенью доказательности для рассеянного склероза, бокового амиотрофического склероза, болезни Альцгеймера и мигрени. Пока не получены убедительные данные об участии тучных клеток в нейровоспалении при болезни Паркинсона, депрессии, шизофрении и расстройстве аутистического спектра, хотя возможно, что они играют определенную роль в патогенезе указанных заболеваний. Данные о влиянии нейровоспаления и тучных клеток на развитие нервно-психических заболеваний могут стать основой для разработки новых подходов к их фармакологическому лечению. В обзоре приведены данные о первых клинических испытаниях противовоспалительных средств и препаратов, модулирующих активность мастоцитов, для лечения мигрени, болезни Альцгеймера, рассеянного склероза и бокового амиотрофического склероза.
Полный текст
Открыть статью на сайте журналаОб авторах
Игорь Павлович Григорьев
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: ipg-iem@yandex.ru
ORCID iD: 0000-0002-3535-7638
канд. биол. наук, старший научный сотрудник отдела общей и частной морфологии
Россия, Санкт-ПетербургДмитрий Эдуардович Коржевский
Институт экспериментальной медицины
Email: DEK2@yandex.ru
ORCID iD: 0000-0002-2456-8165
SPIN-код: 3252-3029
Scopus Author ID: 12770589000
д-р мед. наук, профессор РАН, заведующий лабораторией функциональной морфологии центральной и периферической нервной системы Отдела общей и частной морфологии
Россия, Санкт-ПетербургСписок литературы
- Komi E.A.D., Wohrl S., Bielory L. Mast cell biology at molecular level: a comprehensive review // Clin. Rev. Allergy Immunol. 2020. Vol. 58, No. 3. P. 342–365. doi: 10.1007/s12016-019-08769-2
- Mukai K., Tsai M., Saito H., Galli S.J. Mast cells as sources of cytokines, chemokines, and growth factors // Immunol. Rev. 2018. Vol. 282, No. 1. P. 121–150. doi: 10.1111/imr.12634
- Neumann J. Ueber das Vorkommen der sogenannten “Mastzellen” bei pathologischen Veranderungen des Gehirns // Archiv. f. Pathol. Anat. 1890. Vol. 122. P. 378–380. doi: 10.1007/bf01884453
- Григорьев И.П., Коржевский Д.Э. Тучные клетки в головном мозге позвоночных – локализация и функции // Журнал эволюционной биохимии и физиологии. 2021. Т. 57, № 1. С. 17–31. doi: 10.31857/S0044452921010046
- Fiala M., Chattopadhay M., La Cava A. et al. IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients // J. Neuroinflammation. 2010. Vol. 7. P. 76. doi: 10.1186/1742-2094-7-76
- Kempuraj D., Thangavel R., Selvakumar G.P. et al. Mast cell proteases activate astrocytes and glia-neurons and release interleukin-33 by activating p38 and ERK1/2 MAPKs and NF-B // Mol. Neurobiol. 2019. Vol. 56, No. 3. P. 1681–1693. doi: 10.1007/s12035-018-1177-7
- Dong H., Zhang X., Wang Y. et al. Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation // Mol. Neurobiol. 2017. Vol. 54, No. 2. P. 997–1007. doi: 10.1007/s12035-016-9720-x
- Zhang X., Wang Y., Dong H. et al. Induction of microglial activation by mediators released from mast cells // Cell. Physiol. Biochem. 2016. Vol. 38, No. 4. P. 1520–1531. doi: 10.1159/000443093
- Kempuraj D., Mentor S., Thangavel R. et al. Mast cells in stress, pain, blood-brain barrier, neuroinflammation and Alzheimer’s disease // Front. Cell. Neurosci. 2019. Vol. 13. P. 54. doi: 10.3389/fncel.2019.00054
- Ribatti D. The crucial role of mast cells in blood-brain barrier alterations // Exp. Cell. Res. 2015. Vol. 338, No. 1. P. 119–125. doi: 10.1016/j.yexcr.2015.05.013
- Pinke K.H., Zorzella-Pezavento S.F.G., Lara V.S., Sartori A. Should mast cells be considered therapeutic targets in multiple sclerosis? // Neural. Regen. Res. 2020. Vol. 15, No. 11. P. 1995–2007. doi: 10.4103/1673-5374.282238
- Sandhu J.K., Kulka M. Decoding mast cell-microglia communication in neurodegenerative diseases // Int. J. Mol. Sci. 2021. Vol. 22, No. 3. P. 1093. doi: 10.3390/ijms22031093
- Ibrahim M.Z.M., Reder A.T., Lawand R. et al. The mast cells of the multiple sclerosis brain // J. Neuroimmunol. 1996. Vol. 70, No. 2. P. 131–138. doi: 10.1016/S0165-5728(96)00102-6
- Krüger P.G. Multiple sclerosis: a mast cell mediated psycho-somatic disease? // World J. Neurosci. 2018. Vol. 8, No. 4. P. 444–453. doi: 10.4236/wjns.2018.84035
- Conti P., Kempuraj D. Important role of mast cells in multiple sclerosis // Mult. Scler. Relat. Disord. 2016. Vol. 5. P. 77–80. doi: 10.1016/j.msard.2015.11.005
- Skaper S.D., Facci L., Zusso M., Giusti P. An inflammation-centric view of neurological disease: beyond the neuron // Front. Cell. Neurosci. 2018. Vol. 12. P. 72. doi: 10.3389/fncel.2018.00072
- Kim D.Y., Jeoung D., Ro J.Y. Signaling pathways in the activation of mast cells cocultured with astrocytes and colocalization of both cells in experimental allergic encephalomyelitis // J. Immunol. 2010. Vol. 185, No. 1. P. 273–283. doi: 10.4049/jimmunol.1000991
- Letourneau R., Rozniecki J.J., Dimitriadou V., Theoharides T.C. Ultrastructural evidence of brain mast cell activation without degranulation in monkey experimental allergic encephalomyelitis // J. Neuroimmunol. 2003. Vol. 145, No. 1–2. P. 18–26. doi: 10.1016/j.jneuroim.2003.09.004
- Rodrigues F., Edjlali M., Georgin-Lavialle S. et al. Neuroinflammatory disorders and mastocytosis: A possible association? // J. Allergy Clin. Immunol. Pract. 2019. Vol. 7, No. 8. P. 2878–2881.e1. doi: 10.1016/j.jaip.2019.04.033
- Smith J.H., Butterfield J.H., Pardanani A. et al. Neurologic symptoms and diagnosis in adults with mast cell disease // Clin. Neurol. Neurosurg. 2011. Vol. 113, No. 7. P. 570–574. doi: 10.1016/j.clineuro.2011.05.002
- Brown M.A., Weinberg R.B. Mast cells and innate lymphoid cells: underappreciated players in CNS autoimmune demyelinating disease // Front. Immunol. 2018. Vol. 9. P. 514. doi: 10.3389/fimmu.2018.00514
- Li H., Nourbakhsh B., Safavi F. et al. Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression // J. Immunol. 2011. Vol. 187, No. 1. P. 274–282. doi: 10.4049/jimmunol.1003603
- Medic N., Lorenzon P., Vita F. et al. Mast cell adhesion induces cytoskeletal modifications and programmed cell death in oligodendrocytes // J. Neuroimmunol. 2009. Vol. 218, No. 1–2. P. 57–66. doi: 10.1016/j.jneuroim.2009.10.011
- Russi A.E., Walker-Caulfield M.E., Brown M.A. Mast cell inflammasome activity in the meninges regulates EAE disease severity // Clin. Immunol. 2018. Vol. 189. P. 14–22. doi: 10.1016/j.clim.2016.04.009
- Batoulis H., Addicks K., Kuerten S. Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T(H)1 paradigm // Ann. Anat. 2010. Vol. 192, No. 4. P. 179–193. doi: 10.1016/j.aanat.2010.06.006
- Holman D.W., Klein R.S., Ransohoff R.M. The blood-brain barrier, chemokines and multiple sclerosis // Biochim. Biophys. Acta. 2011. Vol. 1812, No. 2. P. 220–230. doi: 10.1016/j.bbadis.2010.07.019
- Russi A.E., Walker-Caulfield M.E., Guo Y. et al. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity // J. Autoimmun. 2016. Vol. 73. P. 100–110. doi: 10.1016/j.jaut.2016.06.015
- Adzemovic M.V., Zeitelhofer M., Eriksson U. et al. Imatinib ameliorates neuroinflammation in a rat model of multiple sclerosis by enhancing blood-brain barrier integrity and by modulating the peripheral immune response // PLoS One. 2013. Vol. 8, No. 2. P. e56586. doi: 10.1371/journal.pone.0056586
- Folch J., Petrov D., Ettcheto M. et al. Masitinib for the treatment of mild to moderate Alzheimer’s disease // Expert. Rev. Neurother. 2015. Vol. 15, No. 6. P. 587–596. doi: 10.1586/14737175.2015.1045419
- Giovannoni G., Comi G., Cook S. et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis // N. Engl. J. Med. 2010. Vol. 362, No. 5. P. 416–426. doi: 10.1056/NEJMoa0902533
- Menzfeld C., John M., van Rossum D. et al. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism // Glia. 2015. Vol. 63, No. 6. P. 1083–1099. doi: 10.1002/glia.22803
- Montalban X., Arnold D.L., Weber M.S. et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis // N. Engl. J. Med. 2019. Vol. 380, No. 25. P. 2406–2417. doi: 10.1056/NEJMoa1901981
- Pinke K.H., Zorzella-Pezavento S.F.G., de Campos Fraga-Silva T.F. et al. Calming down mast cells with ketotifen: a potential strategy for multiple sclerosis therapy? // Neurotherapeutics. 2020. Vol. 17, No. 1. P. 218–234. doi: 10.1007/s13311-019-00775-8
- Yong H.Y., McKay K.A., Daley C.G.J., Tremlett H. Drug exposure and the risk of multiple sclerosis: A systematic review // Pharmacoepidemiol. Drug Saf. 2018. Vol. 27, No. 7. P. 133–139. doi: 10.1002/pds.4357
- Maslinska D., Laure-Kamionowska M., Maslinski K.T. et al. Distribution of tryptase-containing mast cells and metallothionein reactive astrocytes in human brains with amyloid deposits // Inflamm. Res. 2007. Vol. 56 Suppl 1. P. S17–S18. doi: 10.1007/s00011-006-0508-8
- Harcha P.A., Vargas A., Yi C. et al. Hemichannels are required for amyloid -peptide-induced degranulation and are activated in brain mast cells of APPswe/PS1dE9 mice // J. Neurosci. 2015. Vol. 35, No. 25. P. 9526–9538. doi: 10.1523/JNEUROSCI.3686-14.2015
- Swardfager W., Lanctot K., Rothenburg L. et al. A meta-analysis of cytokines in Alzheimer’s disease // Biol. Psychiatry. 2010. Vol. 68, No. 10. P. 930–941. doi: 10.1016/j.biopsych.2010.06.012
- Малашенкова И.К., Крынский С.А., Хайлов Н.А. и др. Роль цитокинов в консолидации памяти // Успехи современной биологии. 2015. № 5. С. 419–436.
- Zhang X., Yao H., Qian Q. et al. Cerebral mast cells participate in postoperative cognitive dysfunction by promoting astrocyte activation // Cell. Physiol. Biochem. 2016. Vol. 40, No. 1–2. P. 104–116. doi: 10.1159/000452528
- Gupta P.P., Pandey R.D., Jha D. et al. Role of traditional nonsteroidal anti-inflammatory drugs in Alzheimer’s disease: a meta-analysis of randomized clinical trials // Am. J. Alzheimers Dis. Other. Demen. 2015. Vol. 30, No. 2. P. 178–182. doi: 10.1177/1533317514542644
- McGeer P.L., Guo J.P., Lee M. et al. Alzheimer’s disease can be spared by nonsteroidal anti-inflammatory drugs // J. Alzheimers Dis. 2018. Vol. 62, No. 3. P. 1219–1222. doi: 10.3233/JAD-170706
- Safety and efficacy study of ALZT-OP1 in subjects with evidence of early Alzheimer’s disease (COGNITE). Режим доступа: https://clinicaltrials.gov/ct2/show/NCT02547818. Дата обращения: 21.06. 2021.
- Graves M.C., Fiala M., Dinglasan L.A. et al. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells // Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2004. Vol. 5, No. 4. P. 213–219. doi: 10.1080/14660820410020286
- Jones M.K., Nair A., Gupta M. Mast cells in neurodegenerative disease // Front. Cell. Neurosci. 2019. Vol. 13. P. 171. doi: 10.3389/fncel.2019.00171
- Rodrigues M.C., Hernandez-Ontiveros D.G., Louis M.K. et al. Neurovascular aspects of amyotrophic lateral sclerosis // Int. Rev. Neurobiol. 2012. Vol. 102. P. 91–106. doi: 10.1016/B978-0-12-386986-9.00004-1
- Kempuraj D., Thangavel R., Selvakumar G.P. et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration // Front. Cell. Neurosci. 2017. Vol. 11. P. 216. doi: 10.3389/fncel.2017.00216
- Trias E., King P.H., Si Y. et al. Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS // JCI Insight. 2018. Vol. 3, No. 19. P. e123249. doi: 10.1172/jci.insight.123249
- Kuhle J., Lindberg R.L., Regeniter A. et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis // Eur. J. Neurol. 2009. Vol. 16, No. 6. P. 771–774. doi: 10.1111/j.1468-1331.2009.02560.x
- Mitchell R.M., Freeman W.M., Randazzo W.T. et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis // Neurology. 2009. Vol. 72, No. 1. P. 14–19. doi: 10.1212/01.wnl.0000333251.36681.a5
- Rentzos M., Rombos A., Nikolaou C. et al. Interleukin-15 and interleukin-12 are elevated in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis // Eur. Neurol. 2010. Vol. 63, No. 5. P. 285–290. doi: 10.1159/000287582
- Granucci E.J., Griciuc A., Mueller K.A. et al. Cromolyn sodium delays disease onset and is neuroprotective in the SOD1(G93A) Mouse Model of amyotrophic lateral sclerosis // Sci. Rep. 2019. Vol. 9, No. 1. P. 17728. doi: 10.1038/s41598-019-53982-w
- Theoharides T.C., Tsilioni I. Amyotrophic lateral sclerosis, neuroinflammation, and cromolyn // Clin. Ther. 2020. Vol. 42, No. 3. P. 546–549. doi: 10.1016/j.clinthera.2020.01.010
- Mora J.S., Genge A., Chio A. et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial // Amyotroph. Lateral Scler. Frontotemporal Degener. 2020. Vol. 21, No. 1–2. P. 5–14. doi: 10.1080/21678421.2019.1632346
- Guzman-Martinez L., Maccioni R.B., Andrade V. et al. Neuroinflammation as a common feature of neurodegenerative disorders // Front. Pharmacol. 2019. Vol. 10. P. 1008. doi: 10.3389/fphar.2019.01008
- Schwab A.D., Thurston M.J., Machhi J. et al. Immunotherapy for Parkinson’s disease // Neurobiol. Dis. 2020. Vol. 137. P. 104760. doi: 10.1016/j.nbd.2020.104760
- Hong G.U., Cho J.W., Kim S.Y. et al. Inflammatory mediators resulting from transglutaminase 2 expressed in mast cells contribute to the development of Parkinson’s disease in a mouse model // Toxicol. Appl. Pharmacol. 2018. Vol. 358. P. 10–22. doi: 10.1016/j.taap.2018.09.003
- Kempuraj D., Thangavel R., Fattal R. et al. Mast cells release chemokine CCL2 in response to parkinsonian toxin 1-methyl-4-phenyl-pyridinium (MPP(+)) // Neurochem. Res. 2016. Vol. 41, No. 5. P. 1042–1049. doi: 10.1007/s11064-015-1790-z
- Liu J.Q., Chu S.F., Zhou X. et al. Role of chemokines in Parkinson’s disease // Brain Res. Bull. 2019. Vol. 152. P. 11–18. doi: 10.1016/j.brainresbull.2019.05.020
- Selvakumar G.P., Ahmed M.E., Thangavel R. et al. A role for glia maturation factor dependent activation of mast cells and microglia in MPTP induced dopamine loss and behavioural deficits in mice // Brain Behav. Immun. 2020. Vol. 87. P. 429–443. doi: 10.1016/j.bbi.2020.01.013
- Jones M.K., Nair A., Gupta M. Mast cells in neurodegenerative disease // Front. Cell. Neurosci. 2019. Vol. 13. P. 171. doi: 10.3389/fncel.2019.00171
- Moller T. Neuroinflammation in Huntington’s disease // J. Neural. Transm. (Vienna). 2010. Vol. 117, No. 8. P. 1001–1008. doi: 10.1007/s00702-010-0430-7
- Maes M. A review on the acute phase response in major depression // Rev. Neurosci. 1993. Vol. 4, No. 4. P. 407–416. doi: 10.1515/REVNEURO.1993.4.4.407
- Enache D., Pariante C.M., Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue // Brain Behav. Immun. 2019. Vol. 81. P. 24–40. doi: 10.1016/j.bbi.2019.06.015
- Eswarappa M., Neylan T.C., Whooley M.A. et al. Inflammation as a predictor of disease course in posttraumatic stress disorder and depression: A prospective analysis from the Mind Your Heart Study // Brain Behav. Immun. 2019. Vol. 75. P. 220–227. doi: 10.1016/j.bbi.2018.10.012
- Goldsmith D.R., Rapaport M.H., Miller B.J. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression // Mol. Psychiatry. 2016. Vol. 21, No. 12. P. 1696–1709. doi: 10.1038/mp.2016.3
- Hiles S.A., Baker A.L., de Malmanche T., Attia J. Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis // Psychol. Med. 2012. Vol. 42, No. 10. P. 2015–2026. doi: 10.1017/S0033291712000128
- Milenkovic V.M., Stanton E.H., Nothdurfter C. et al. The role of chemokines in the pathophysiology of major depressive disorder // Int. J. Mol. Sci. 2019. Vol. 20, No. 9. P. 2283. doi: 10.3390/ijms20092283
- Wang A.K., Miller B.J. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression // Schizophr. Bull. 2018. Vol. 44, No. 1. P. 75–83. doi: 10.1093/schbul/sbx035
- Müller N. Immunology of major depression // Neuroimmunomodulation. 2014. Vol. 21, No. 2–3. P. 123–130. doi: 10.1159/000356540
- Dean B., Tawadros N., Scarr E., Gibbons A.S. Regionally-specific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder // J. Affect. Disord. 2010. Vol. 120, No. 1–3. P. 245–248. doi: 10.1016/j.jad.2009.04.027
- Kessing L.V., Rytgaard H.C., Gerds T.A. et al. New drug candidates for depression - a nationwide population-based study // Acta. Psychiatr. Scand. 2019. Vol. 139, No. 1. P. 68–77. doi: 10.1111/acps.12957
- Fourrier C., Sampson E., Mills N.T., Baune B.T. Anti-inflammatory treatment of depression: study protocol for a randomised controlled trial of vortioxetine augmented with celecoxib or placebo // Trials. 2018. Vol. 19, No. 1. P. 447. doi: 10.1186/s13063-018-2829-7
- Quinn A.L., Dean O.M., Davey C.G. et al. Youth Depression Alleviation-Augmentation with an anti-inflammatory agent (YoDA-A): protocol and rationale for a placebo-controlled randomized trial of rosuvastatin and aspirin // Early Interv. Psychiatry. 2018. Vol. 12, No. 1. P. 45–54. doi: 10.1111/eip.12280
- Suarez A.L., Feramisco J.D., Koo J., Steinhoff M. Psychoneuroimmunology of psychological stress and atopic dermatitis: pathophysiologic and therapeutic updates // Acta. Derm. Venereol. 2012. Vol. 92, No. 1. P. 7–15. doi: 10.2340/00015555-1188
- Häuser W., Janke K.H., Klump B., Hinz A. Anxiety and depression in patients with inflammatory bowel disease: comparisons with chronic liver disease patients and the general population // Inflamm. Bowel. Dis. 2011. Vol. 17, No. 2. P. 621–632. doi: 10.1002/ibd.21346
- Maes M., Kubera M., Obuchowiczwa E. et al. Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative and nitrosative stress pathways // Neuro. Endocrinol. Lett. 2011. Vol. 32, No. 1. P. 7–24.
- DellaGioia N., Hannestad J. A critical review of human endotoxin administration as an experimental paradigm of depression // Neurosci. Biobehav. Rev. 2010. Vol. 34, No. 1. P. 130–143. doi: 10.1016/j.neubiorev.2009.07.014
- Borsini A., Pariante C.M., Zunszain P.A. et al. The role of circulatory systemic environment in predicting interferon-alpha-induced depression: The neurogenic process as a potential mechanism // Brain Behav. Immun. 2019. Vol. 81. P. 220–227. doi: 10.1016/j.bbi.2019.06.018
- Capuron L., Ravaud A., Miller A.H., Dantzer R. Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy // Brain Behav. Immun. 2004. Vol. 18, No. 3. P. 205–213. doi: 10.1016/j.bbi.2003.11.004
- Capuron L., Hauser P., Hinze-Selch D. et al. Treatment of cytokine-induced depression // Brain Behav. Immun. 2002. Vol. 16, No. 5. P. 575–580. doi: 10.1016/s0889-1591(02)00007-7
- Eller T., Vasar V., Shlik J., Maron E. Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2008. Vol. 32, No. 2. P. 445–450. doi: 10.1016/j.pnpbp.2007.09.015
- Boddaert N., Salvador A., Chandesris M.O. et al. Neuroimaging evidence of brain abnormalities in mastocytosis // Transl. Psychiatry. 2017. Vol. 7, No. 8. P. e1197. doi: 10.1038/tp.2017.137
- Georgin-Lavialle S., Gaillard R., Moura D., Hermine O. Mastocytosis in adulthood and neuropsychiatric disorders // Transl. Res. 2016. Vol. 174. P. 77–85.e1. doi: 10.1016/j.trsl.2016.03.013
- Kano M., Fukudo S., Tashiro A. et al. Decreased histamine H1 receptor binding in the brain of depressed patients // Eur. J. Neurosci. 2004. Vol. 20, No. 3. P. 803–810. doi: 10.1111/j.1460-9568.2004.03540.x
- Lamberti C., Ipponi A., Bartolini A. et al. Antidepressant-like effects of endogenous histamine and of two histamine H1 receptor agonists in the mouse forced swim test // Br. J. Pharmacol. 1998. Vol. 123, No. 7. P. 1331–1336. doi: 10.1038/sj.bjp.0701740
- Ушаков В.Л., Малашенкова И.К., Крынский С.А. и др. Базовая когнитивная архитектура, системное воспаление и иммунная дисфункция при шизофрении // Современные технологии в медицине. 2019. Т. 11, № 3. С. 32–40. doi: 10.17691/stm2019.11.3.04
- Pandurangi A.K., Buckley P.F. Inflammation, antipsychotic drugs, and evidence for effectiveness of anti-inflammatory agents in schizophrenia // Curr. Top. Behav. Neurosci. 2020. Vol. 44. P. 227–244. doi: 10.1007/7854_2019_91
- Angelidou A., Asadi S., Alysandratos K.D. et al. Perinatal stress, brain inflammation and risk of autism-review and proposal // BMC Pediatr. 2012. Vol. 12. P. 89. doi: 10.1186/1471-2431-12-89
- Abdallah M.W., Larsen N., Grove J. et al. Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders // World J. Biol. Psychiatry. 2013. Vol. 14, No. 7. P. 528–538. doi: 10.3109/15622975.2011.639803
- Goines P.E., Croen L.A., Braunschweig D. et al. Increased midgestational IFN-, IL-4 and IL-5 in women bearing a child with autism: A case-control study // Mol. Autism. 2011. Vol. 2. P. 13. doi: 10.1186/2040-2392-2-13
- Ferretti C.J., Hollander E. The role of inflammation in autism spectrum disorder // Immunology and Psychiatry. Current topics in neurotoxicity. Ed. by N. Müller, A.M. Myint, M. Schwarz. Cham: Springer, 2015. Vol. 8. P. 275–312. doi: 10.1007/978-3-319-13602-8_14
- Ahmad S.F., Ansari M.A., Nadeem A. et al. Elevated IL-16 expression is associated with development of immune dysfunction in children with autism // Psychopharmacology (Berl). 2019. Vol. 236, No. 2. P. 831–838. doi: 10.1007/s00213-018-5120-4
- Siniscalco D., Schultz S., Brigida A.L., Antonucci N. Inflammation and neuro-immune dysregulations in autism spectrum disorders // Pharmaceuticals (Basel). 2018. Vol. 11, No. 2. P. 56. doi: 10.3390/ph11020056
- Chez M.G., Dowling T., Patel P.B. et al. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children // Pediatr. Neurol. 2007. Vol. 36, No. 6. P. 361–365. doi: 10.1016/j.pediatrneurol.2007.01.012
- Vargas D.L., Nascimbene C., Krishnan C. et al. Neuroglial activation and neuroinflammation in the brain of patients with autism // Ann. Neurol. 2005. Vol. 57, No. 1. P. 67–81. doi: 10.1002/ana.20315
- Li X., Chauhan A., Sheikh A.M. et al. Elevated immune response in the brain of autistic patients // J. Neuroimmunol. 2009. Vol. 207, No. 1–2. P. 111–116. doi: 10.1016/j.jneuroim.2008.12.002
- Wei H., Zou H., Sheikh A.M. et al. IL–6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation // J. Neuroinflammation. 2011. Vol. 8. P. 52. doi: 10.1186/1742-2094-8-52
- Theoharides T.C. Autism spectrum disorders and mastocytosis // Int. J. Immunopathol. Pharmacol. 2009. Vol. 22, No. 4. P. 859–865. doi: 10.1177/039463200902200401
- Theoharides T.C., Tsilioni I., Patel A.B., Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders // Transl. Psychiatry. 2016. Vol. 6, No. 6. P. e844. doi: 10.1038/tp.2016.77
- Theoharides T.C. Is a subtype of autism an ‘allergy of the brain’? // Clin. Ther. 2013. Vol. 35, No. 5. P. 584–591. doi: 10.1016/j.clinthera.2013.04.009
- Theoharides T.C., Stewart J.M., Panagiotidou S., Melamed I. Mast cells, brain inflammation and autism // Eur. J. Pharmacol. 2016. Vol. 778. P. 96–102. doi: 10.1016/j.ejphar.2015.03.086
- Song Y., Lu M., Yuan H. et al. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review) // Exp. Ther. Med. 2020. Vol. 20, No. 2. P. 714–726. doi: 10.3892/etm.2020.8789
- Rozniecki J.J., Dimitriadou V., Lambracht-Hall M. et al. Morphological and functional demonstration of rat dura mater mast cell–neuron interactions in vitro and in vivo // Brain Res. 1999. Vol. 849, No. 1–2. P. 1–15. doi: 10.1016/S0006-8993(99)01855-7
- Koroleva K., Gafurov O., Guselnikova V. et al. Meningeal mast cells contribute to ATP-induced nociceptive firing in trigeminal nerve terminals: direct and indirect purinergic mechanisms triggering migraine pain // Front. Cell. Neurosci. 2019. Vol. 13. P. 195. doi: 10.3389/fncel.2019.00195
- Green D.P., Limjunyawong N., Gour N. et al. A Mast-cell-specific receptor mediates neurogenic inflammation and pain // Neuron. 2019. Vol. 101, No. 3. P. 412–420.e3. doi: 10.1016/j.neuron.2019.01.012
- Ramachandran R. Neurogenic inflammation and its role in migraine // Semin. Immunopathol. 2018. Vol. 40, No. 3. P. 301–314. doi: 10.1007/s00281-018-0676-y
- Dimitriadou V., Henry P., Brochet B. et al. Cluster headache: ultrastructural evidence for mast cell degranulation and interaction with nerve fibres in the human temporal artery // Cephalalgia. 1990. Vol. 10, No. 5. P. 221–228. doi: 10.1046/j.1468-2982.1990.1005221.x
- Hassler S.N., Ahmad F.B., Burgos-Vega C.C. et al. Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice // Cephalalgia. 2019. Vol. 39, No. 1. P. 111–122. doi: 10.1177/0333102418779548
- Monro J., Carini C., Brostoff J. Migraine is a food-allergic disease // Lancet. 1984. Vol. 2, No. 8405. P. 719–721. doi: 10.1016/s0140-6736(84)92626-6
- Карпова М.И., Симбирцев А.С., Шамуров Ю.С. Состояние иммунной системы у больных первичными головными болями // Медицинская иммунология. 2010. Т. 12, № 6. С. 529–536. doi: 10.15789/1563-0625-2010-6-529-536
- Iljazi A., Ayata C., Ashina M., Hougaard A. The role of endothelin in the pathophysiology of migraine – a systematic review // Curr. Pain. Headache Rep. 2018. Vol. 22, No. 4. P. 27. doi: 10.1007/s11916-018-0682-8
- Yuan H., Silberstein S.D. Histamine and migraine // Headache. 2018. Vol. 58, No. 1. P. 184–193. doi: 10.1111/head.13164
- Каратыгина Н.В. Место нестероидных противовоспалительных средств в комплексной терапии мигрени // Русский медицинский журнал. 2015. Т. 23, № 30. С. 12–15.
- Goldstein J., Hagen M., Gold M. Results of a multicenter, double-blind, randomized, parallel-group, placebo-controlled, single-dose study comparing the fixed combination of acetaminophen, acetylsalicylic acid, and caffeine with ibuprofen for acute treatment of patients with severe migraine // Cephalalgia. 2014. Vol. 34, No. 13. P. 1070–1078. doi: 10.1177/0333102414530527
- Olness K., Hall H., Rozniecki J.J. et al. Mast cell activation in children with migraine before and after training in self-regulation // Headache. 1999. Vol. 39, No. 2. P. 101–107. doi: 10.1046/j.1526-4610.1999.3902101.x
- Worm J., Falkenberg K., Olesen J. Histamine and migraine revisited: mechanisms and possible drug targets // J. Headache Pain. 2019. Vol. 20, No. 1. P. 30. doi: 10.1186/s10194-019-0984-1
- Нурхаметова Д.Ф., Королёва К.С., Гафуров О.Ш. и др. Медиаторы тучных клеток как триггеры боли при мигрени: сравнение гистамина и серотонина в активации первичных афферентов в менингеальных оболочках крысы // Российский физиологический журнал им. И.М. Сеченова. 2019. Т. 105, № 10. С. 1225–1235. doi: 10.1134/S0869813919100078
- Togha M., Malamiri R.A., Rashidi-Ranjbar N. et al. Efficacy and safety of cinnarizine in the prophylaxis of migraine headaches in children: an open, randomized comparative trial with propranolol // Acta. Neurol. Belg. 2012. Vol. 112, No. 1. P. 51–55. doi: 10.1007/s13760-012-0011-7
- Levy D. Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: the role of immuno-vascular interactions and cortical spreading depression // Curr. Pain Headache Rep. 2012. Vol. 16, No. 3. P. 270–277. doi: 10.1007/s11916-012-0255-1
- Borkum J.M. Migraine triggers and oxidative stress: a narrative review and synthesis // Headache. 2016. Vol. 56, No. 1. P. 12–35. doi: 10.1111/head.12725
Дополнительные файлы
