Mast cells and neuroinflammation in pathogenesis of neurologic and psychiatric diseases
- Authors: Grigorev I.P.1, Korzhevskii D.E.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 21, No 2 (2021)
- Pages: 7-24
- Section: Analytical reviews
- URL: https://bakhtiniada.ru/MAJ/article/view/63228
- DOI: https://doi.org/10.17816/MAJ63228
- ID: 63228
Cite item
Abstract
The review summarizes current data on the role of neuroinflammation and mast cells in the pathogenesis of nervous and mental diseases, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, depression, autism, migraine, schizophrenia and some others. The contribution of neuroinflammation to the pathogenesis of many of these diseases has been demonstrated. The involvement of mast cells in the development of the neuroinflammatory process has with varying degrees of evidence been shown for multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease and migraine. There is still no convincing evidence that mast cells contribute to neuroinflammation in Parkinson’s disease, depression, schizophrenia and autism spectrum disorder, although it is possible that they play a role in the pathogenesis of these diseases. Data on the causal role of neuroinflammation and mast cells in the development of neuropsychiatric diseases may become the basis for the development of new approaches to their pharmacological treatment. The review provides data on the first clinical trials of anti-inflammatory and mast cell activity-modulating drugs for the treatment of migraine, Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclerosis.
Full Text
##article.viewOnOriginalSite##About the authors
Igor P. Grigorev
Institute of Experimental Medicine
Author for correspondence.
Email: ipg-iem@yandex.ru
ORCID iD: 0000-0002-3535-7638
PhD (Biology), Senior Researcher of the Department of General and Special Morphology
Russian Federation, Saint PetersburgDmitrii E. Korzhevskii
Institute of Experimental Medicine
Email: DEK2@yandex.ru
ORCID iD: 0000-0002-2456-8165
SPIN-code: 3252-3029
Scopus Author ID: 12770589000
MD, PhD, DSc (Medicine), Professor of the RAS, Head of the Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology
Russian Federation, Saint PetersburgReferences
- Komi EAD, Wohrl S, Bielory L. Mast cell biology at molecular level: a comprehensive review. Clin Rev Allergy Immunol. 2020;58(3):342–365. doi: 10.1007/s12016-019-08769-2
- Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018;282(1):121–150. doi: 10.1111/imr.12634
- Neumann J. Ueber das Vorkommen der sogenannten “Mastzellen” bei pathologischen Veranderungen des Gehirns. Archiv f. Pathol. Anat. 1890;122:378–380. doi: 10.1007/bf01884453
- Grigorev IP, Korzhevskii DE. Mast cells in the vertebrate brain: localization and functions. Journal of Evolutionary Biochemistry and Physiology. 2021;57(1):16–33. doi: 10.1134/S0022093021010026
- Fiala M, Chattopadhay M, La Cava A, et al. IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients. J Neuroinflammation. 2010;7:76. doi: 10.1186/1742-2094-7-76
- Kempuraj D, Thangavel R, Selvakumar GP, et al. Mast cell proteases activate astrocytes and glia-neurons and release interleukin-33 by activating p38 and ERK1/2 MAPKs and NF-B. Mol Neurobiol. 2019;56(3):1681–1693. doi: 10.1007/s12035-018-1177-7
- Dong H, Zhang X, Wang Y, et al. Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol. 2017;54(2):997–1007. doi: 10.1007/s12035-016-9720-x
- Zhang X, Wang Y, Dong H, et al. Induction of microglial activation by mediators released from mast cells. Cell Physiol Biochem. 2016;38(4):1520–1531. doi: 10.1159/000443093
- Kempuraj D, Mentor S, Thangavel R, et al. Mast cells in stress, pain, blood-brain barrier, neuroinflammation and Alzheimer’s disease. Front Cell Neurosci. 2019;13:54. doi: 10.3389/fncel.2019.00054
- Ribatti D. The crucial role of mast cells in blood-brain barrier alterations. Exp Cell Res. 2015;338(1):119–125. doi: 10.1016/j.yexcr.2015.05.013
- Pinke KH, Zorzella-Pezavento SFG, Lara VS, Sartori A. Should mast cells be considered therapeutic targets in multiple sclerosis? Neural Regen Res. 2020;15(11):1995–2007. doi: 10.4103/1673-5374.282238
- Sandhu JK, Kulka M. Decoding mast cell-microglia communication in neurodegenerative diseases. Int J Mol Sci. 2021;22(3):1093. doi: 10.3390/ijms22031093
- Ibrahim MZM, Reder AT, Lawand R, et al. The mast cells of the multiple sclerosis brain. J Neuroimmunol. 1996;70(2):131–138. doi: 10.1016/S0165-5728(96)00102-6
- Krüger PG. Multiple sclerosis: a mast cell mediated psycho-somatic disease? World J Neurosci. 2018;8(4):444–453. doi: 10.4236/wjns.2018.84035
- Conti P, Kempuraj D. Important role of mast cells in multiple sclerosis. Mult Scler Relat Disord. 2016;5:77–80. doi: 10.1016/j.msard.2015.11.005
- Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 2018;12:72. doi: 10.3389/fncel.2018.00072
- Kim DY, Jeoung D, Ro JY. Signaling pathways in the activation of mast cells cocultured with astrocytes and colocalization of both cells in experimental allergic encephalomyelitis. J Immunol. 2010;185(1):273–283. doi: 10.4049/jimmunol.1000991
- Letourneau R, Rozniecki JJ, Dimitriadou V, Theoharides TC. Ultrastructural evidence of brain mast cell activation without degranulation in monkey experimental allergic encephalomyelitis. J Neuroimmunol. 2003;145(1–2):18–26. doi: 10.1016/j.jneuroim.2003.09.004
- Rodrigues F, Edjlali M, Georgin-Lavialle S, et al. Neuroinflammatory disorders and mastocytosis: A possible association? J Allergy Clin Immunol Pract. 2019;7(8):2878–2881.e1. doi: 10.1016/j.jaip.2019.04.033
- Smith JH, Butterfield JH, Pardanani A, et al. Neurologic symptoms and diagnosis in adults with mast cell disease. Clin Neurol Neurosurg. 2011;113(7):570–574. doi: 10.1016/j.clineuro.2011.05.002
- Brown MA, Weinberg RB. Mast cells and innate lymphoid cells: underappreciated players in CNS autoimmune demyelinating disease. Front Immunol. 2018;9:514. doi: 10.3389/fimmu.2018.00514
- Li H, Nourbakhsh B, Safavi F, et al. Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. J Immunol. 2011;187(1):274–282. doi: 10.4049/jimmunol.1003603
- Medic N, Lorenzon P, Vita F, et al. Mast cell adhesion induces cytoskeletal modifications and programmed cell death in oligodendrocytes. J Neuroimmunol. 2009;218(1–2):57–66. doi: 10.1016/j.jneuroim.2009.10.011
- Russi AE, Walker-Caulfield ME, Brown MA. Mast cell inflammasome activity in the meninges regulates EAE disease severity. Clin Immunol. 2018;189:14–22. doi: 10.1016/j.clim.2016.04.009
- Batoulis H, Addicks K, Kuerten S. Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T(H)1 paradigm. Ann Anat. 2010;192(4):179–193. doi: 10.1016/j.aanat.2010.06.006
- Holman DW, Klein RS, Ransohoff RM. The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta. 2011;1812(2):220–230. doi: 10.1016/j.bbadis.2010.07.019
- Russi AE, Walker-Caulfield ME, Guo Y, et al. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity. J Autoimmun. 2016;73:100–110. doi: 10.1016/j.jaut.2016.06.015
- Adzemovic MV, Zeitelhofer M, Eriksson U, et al. Imatinib ameliorates neuroinflammation in a rat model of multiple sclerosis by enhancing blood-brain barrier integrity and by modulating the peripheral immune response. PLoS One. 2013;8(2):e56586. doi: 10.1371/journal.pone.0056586
- Folch J, Petrov D, Ettcheto M, et al. Masitinib for the treatment of mild to moderate Alzheimer’s disease. Expert Rev Neurother. 2015;15(6):587–596. doi: 10.1586/14737175.2015.1045419
- Giovannoni G, Comi G, Cook S, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):416–426. doi: 10.1056/NEJMoa0902533
- Menzfeld C, John M, van Rossum D, et al. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia. 2015;63(6):1083–1099. doi: 10.1002/glia.22803
- Montalban X, Arnold DL, Weber MS, et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med. 2019;380(25):2406–2417. doi: 10.1056/NEJMoa1901981
- Pinke KH, Zorzella-Pezavento SFG, de Campos Fraga-Silva TF, et al. Calming down mast cells with ketotifen: a potential strategy for multiple sclerosis therapy? Neurotherapeutics. 2020;17(1):218–234. doi: 10.1007/s13311-019-00775-8
- Yong HY, McKay KA, Daley CGJ, Tremlett H. Drug exposure and the risk of multiple sclerosis: A systematic review. Pharmacoepidemiol Drug Saf. 2018;27(7):133–139. doi: 10.1002/pds.4357
- Maslinska D, Laure-Kamionowska M, Maslinski KT, et al. Distribution of tryptase-containing mast cells and metallothionein reactive astrocytes in human brains with amyloid deposits. Inflamm. Res. 2007;56 Suppl 1:S17–S18. doi: 10.1007/s00011-006-0508-8
- Harcha PA, Vargas A, Yi C, et al. Hemichannels are required for amyloid -peptide-induced degranulation and are activated in brain mast cells of APPswe/PS1dE9 mice. J Neurosci. 2015;35(25):9526–9538. doi: 10.1523/JNEUROSCI.3686-14.2015
- Swardfager W, Lanctot K, Rothenburg L, et al. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry. 2010;68(10):930–941. doi: 10.1016/j.biopsych.2010.06.012
- Malashenkova IK, Krynskiy SA, Khailov NA, et al. The role of cytokines in memory consolidation. Biol Bull Rev. 2016;6(2):126–140. doi: 10.1134/S2079086416020055
- Zhang X, Yao H, Qian Q, et al. Cerebral mast cells participate in postoperative cognitive dysfunction by promoting astrocyte activation. Cell Physiol Biochem. 2016;40(1–2): 104–116. doi: 10.1159/000452528
- Gupta PP, Pandey RD, Jha D, et al. Role of traditional nonsteroidal anti-inflammatory drugs in Alzheimer’s disease: a meta-analysis of randomized clinical trials. Am J Alzheimers Dis Other Demen. 2015;30(2):178–182. doi: 10.1177/1533317514542644
- McGeer PL, Guo JP, Lee M, et al. Alzheimer’s disease can be spared by nonsteroidal anti-inflammatory drugs. J Alzheimers Dis. 2018;62(3):1219–1222. doi: 10.3233/JAD-170706
- Safety and efficacy study of ALZT-OP1 in subjects with evidence of early Alzheimer’s disease (COGNITE). Available from: https://clinicaltrials.gov/ct2/show/NCT02547818. Accessed: June 21, 2021.
- Graves MC, Fiala M, Dinglasan LA, et al. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004;5(4):213–219. doi: 10.1080/14660820410020286
- Jones MK, Nair A, Gupta M. Mast cells in neurodegenerative disease. Front Cell Neurosci. 2019;13:171. doi: 10.3389/fncel.2019.00171
- Rodrigues MC, Hernandez-Ontiveros DG, Louis MK, et al. Neurovascular aspects of amyotrophic lateral sclerosis. Int Rev Neurobiol. 2012;102:91–106. doi: 10.1016/B978-0-12-386986-9.00004-1
- Kempuraj D, Thangavel R, Selvakumar GP, et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. 2017;11:216. doi: 10.3389/fncel.2017.00216
- Trias E, King PH, Si Y, et al. Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS. JCI Insight. 2018;3(19):e123249. doi: 10.1172/jci.insight.123249
- Kuhle J, Lindberg RL, Regeniter A, et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol. 2009;16(6):771–774. doi: 10.1111/j.1468-1331.2009.02560.x
- Mitchell RM, Freeman WM, Randazzo WT, et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology. 2009;72(1):14–19. doi: 10.1212/01.wnl.0000333251.36681.a5
- Rentzos M, Rombos A, Nikolaou C, et al. Interleukin-15 and interleukin-12 are elevated in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Eur Neurol. 2010;63(5):285–290. doi: 10.1159/000287582
- Granucci EJ, Griciuc A, Mueller KA, et al. Cromolyn sodium delays disease onset and is neuroprotective in the SOD1(G93A) Mouse Model of amyotrophic lateral sclerosis. Sci Rep. 2019;9(1):17728. doi: 10.1038/s41598-019-53982-w
- Theoharides TC, Tsilioni I. Amyotrophic lateral sclerosis, neuroinflammation, and cromolyn. Clin Ther. 2020;42(3):546–549. doi: 10.1016/j.clinthera.2020.01.010
- Mora JS, Genge A, Chio A, et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(1–2):5–14. doi: 10.1080/21678421.2019.1632346
- Guzman-Martinez L, Maccioni RB, Andrade V, et al. Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol. 2019;10:1008. doi: 10.3389/fphar.2019.01008
- Schwab AD, Thurston MJ, Machhi J, et al. Immunotherapy for Parkinson’s disease. Neurobiol Dis. 2020;137:104760. doi: 10.1016/j.nbd.2020.104760
- Hong GU, Cho JW, Kim SY, et al. Inflammatory mediators resulting from transglutaminase 2 expressed in mast cells contribute to the development of Parkinson’s disease in a mouse model. Toxicol Appl Pharmacol. 2018;358:10–22. doi: 10.1016/j.taap.2018.09.003
- Kempuraj D, Thangavel R, Fattal R, et al. Mast cells release chemokine CCL2 in response to parkinsonian toxin 1-methyl-4-phenyl-pyridinium (MPP(+)). Neurochem Res. 2016;41(5):1042–1049. doi: 10.1007/s11064-015-1790-z
- Liu JQ, Chu SF, Zhou X, et al. Role of chemokines in Parkinson’s disease. Brain Res Bull. 2019;152:11–18. doi: 10.1016/j.brainresbull.2019.05.020
- Selvakumar GP, Ahmed ME, Thangavel R, et al. A role for glia maturation factor dependent activation of mast cells and microglia in MPTP induced dopamine loss and behavioural deficits in mice. Brain Behav Immun. 2020;87:429–443. doi: 10.1016/j.bbi.2020.01.013
- Jones MK, Nair A, Gupta M. Mast cells in neurodegenerative disease. Front Cell Neurosci. 2019;13:171. doi: 10.3389/fncel.2019.00171
- Moller T. Neuroinflammation in Huntington’s disease. J Neural Transm (Vienna). 2010;117(8):1001–1008. doi: 10.1007/s00702-010-0430-7
- Maes M. A review on the acute phase response in major depression. Rev Neurosci. 1993;4(4):407–416. doi: 10.1515/REVNEURO.1993.4.4.407
- Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;81:24–40. doi: 10.1016/j.bbi.2019.06.015
- Eswarappa M, Neylan TC, Whooley MA, et al. Inflammation as a predictor of disease course in posttraumatic stress disorder and depression: A prospective analysis from the Mind Your Heart Study. Brain Behav Immun. 2019;75:220–227. doi: 10.1016/j.bbi.2018.10.012
- Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–1709. doi: 10.1038/mp.2016.3
- Hiles SA, Baker AL, de Malmanche T, Attia J. Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis. Psychol Med. 2012;42(10):2015–2026. doi: 10.1017/S0033291712000128
- Milenkovic VM, Stanton EH, Nothdurfter C, et al. The role of chemokines in the pathophysiology of major depressive disorder. Int J Mol Sci. 2019;20(9):2283. doi: 10.3390/ijms20092283
- Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44(1):75–83. doi: 10.1093/schbul/sbx035
- Müller N. Immunology of major depression. Neuroimmunomodulation. 2014;21(2–3):123–130. doi: 10.1159/000356540
- Dean B, Tawadros N, Scarr E, Gibbons AS. Regionally-specific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder. J Affect Disord. 2010;120(1–3):245–248. doi: 10.1016/j.jad.2009.04.027
- Kessing LV, Rytgaard HC, Gerds TA, et al. New drug candidates for depression – a nationwide population-based study. Acta Psychiatr Scand. 2019;139(1):68–77. doi: 10.1111/acps.12957
- Fourrier C, Sampson E, Mills NT, Baune BT. Anti-inflammatory treatment of depression: study protocol for a randomised controlled trial of vortioxetine augmented with celecoxib or placebo. Trials. 2018;19(1):447. doi: 10.1186/s13063-018-2829-7
- Quinn AL, Dean OM, Davey CG, et al. Youth Depression Alleviation-Augmentation with an anti-inflammatory agent (YoDA-A): protocol and rationale for a placebo-controlled randomized trial of rosuvastatin and aspirin. Early Interv Psychiatry. 2018;12(1):45–54. doi: 10.1111/eip.12280
- Suarez AL, Feramisco JD, Koo J, Steinhoff M. Psychoneuroimmunology of psychological stress and atopic dermatitis: pathophysiologic and therapeutic updates. Acta Derm Venereol. 2012;92(1):7–15. doi: 10.2340/00015555-1188
- Häuser W, Janke KH, Klump B, Hinz A. Anxiety and depression in patients with inflammatory bowel disease: comparisons with chronic liver disease patients and the general population. Inflamm Bowel Dis. 2011;17(2):621–632. doi: 10.1002/ibd.21346
- Maes M, Kubera M, Obuchowiczwa E, et al. Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative and nitrosative stress pathways. Neuro Endocrinol Lett. 2011;32(1):7–24.
- DellaGioia N, Hannestad J. A critical review of human endotoxin administration as an experimental paradigm of depression. Neurosci Biobehav Rev. 2010;34(1):130–143. doi: 10.1016/j.neubiorev.2009.07.014
- Borsini A, Pariante CM, Zunszain PA, et al. The role of circulatory systemic environment in predicting interferon-alpha-induced depression: The neurogenic process as a potential mechanism. Brain Behav Immun. 2019;81:220–227. doi: 10.1016/j.bbi.2019.06.018
- Capuron L, Ravaud A, Miller AH, Dantzer R. Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy. Brain Behav Immun. 2004;18(3):205–213. doi: 10.1016/j.bbi.2003.11.004
- Capuron L, Hauser P, Hinze-Selch D, et al. Treatment of cytokine-induced depression. Brain Behav Immun. 2002;16(5):575–580. doi: 10.1016/s0889-1591(02)00007-7
- Eller T, Vasar V, Shlik J, Maron E. Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(2):445–450. doi: 10.1016/j.pnpbp.2007.09.015
- Boddaert N, Salvador A, Chandesris MO, et al. Neuroimaging evidence of brain abnormalities in mastocytosis. Transl Psychiatry. 2017;7(8):e1197. doi: 10.1038/tp.2017.137
- Georgin-Lavialle S, Gaillard R, Moura D, Hermine O. Mastocytosis in adulthood and neuropsychiatric disorders. Transl Res. 2016;174:77–85.e1. doi: 10.1016/j.trsl.2016.03.013
- Kano M, Fukudo S, Tashiro A, et al. Decreased histamine H1 receptor binding in the brain of depressed patients. Eur J Neurosci. 2004;20(3):803–810. doi: 10.1111/j.1460-9568.2004.03540.x
- Lamberti C, Ipponi A, Bartolini A, et al. Antidepressant-like effects of endogenous histamine and of two histamine H1 receptor agonists in the mouse forced swim test. Br J Pharmacol. 1998;123(7):1331–1336. doi: 10.1038/sj.bjp.0701740
- Ushakov VL, Malashenkova IK, Krynskiy SA, et al. Basic cognitive architecture, systemic inflammation, and immune dysfunction in schizophrenia. Modern Technologies in Medicine. 2019;11(3):32–40. doi: 10.17691/stm2019.11.3.04
- Pandurangi AK, Buckley PF. Inflammation, antipsychotic drugs, and evidence for effectiveness of anti-inflammatory agents in schizophrenia. Curr Top Behav Neurosci. 2020;44:227–244. doi: 10.1007/7854_2019_91
- Angelidou A, Asadi S, Alysandratos KD, et al. Perinatal stress, brain inflammation and risk of autism-review and proposal. BMC Pediatr. 2012;12:89. doi: 10.1186/1471-2431-12-89
- Abdallah MW, Larsen N, Grove J, et al. Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders. World J Biol Psychiatry. 2013;14(7):528–538. doi: 10.3109/15622975.2011.639803
- Goines PE, Croen LA, Braunschweig D, et al. Increased midgestational IFN-, IL-4 and IL-5 in women bearing a child with autism: A case-control study. Mol Autism. 2011;2:13. doi: 10.1186/2040-2392-2-13
- Ferretti CJ, Hollander E. The role of inflammation in autism spectrum disorder. In: Müller N, Myint AM, Schwarz M (eds). Immunology and Psychiatry. Current topics in neurotoxicity. Cham: Springer; 2015;8:275–312. doi: 10.1007/978-3-319-13602-8_14
- Ahmad SF, Ansari MA, Nadeem A, et al. Elevated IL-16 expression is associated with development of immune dysfunction in children with autism. Psychopharmacology (Berl). 2019;236(2):831–838. doi: 10.1007/s00213-018-5120-4
- Siniscalco D, Schultz S, Brigida AL, Antonucci N. Inflammation and neuro-immune dysregulations in autism spectrum disorders. Pharmaceuticals (Basel). 2018;11(2):56. doi: 10.3390/ph11020056
- Chez MG, Dowling T, Patel PB, et al. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol. 2007;36(6):361–365. doi: 10.1016/j.pediatrneurol.2007.01.012
- Vargas DL, Nascimbene C, Krishnan C, et al. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81. doi: 10.1002/ana.20315
- Li X, Chauhan A, Sheikh AM, et al. Elevated immune response in the brain of autistic patients. J Neuroimmunol. 2009;207(1–2): 111–116. doi: 10.1016/j.jneuroim.2008.12.002
- Wei H, Zou H, Sheikh AM, et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation. 2011;8:52. doi: 10.1186/1742-2094-8-52
- Theoharides TC. Autism spectrum disorders and mastocytosis. Int J Immunopathol Pharmacol. 2009;22(4):859–865. doi: 10.1177/039463200902200401
- Theoharides TC, Tsilioni I, Patel AB, Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry. 2016;6(6):e844. doi: 10.1038/tp.2016.77
- Theoharides TC. Is a subtype of autism an ‘allergy of the brain’? Clin Ther. 2013;35(5):584–591. doi: 10.1016/j.clinthera.2013.04.009
- Theoharides TC, Stewart JM, Panagiotidou S, Melamed I. Mast cells, brain inflammation and autism. Eur J Pharmacol. 2016;778:96–102. doi: 10.1016/j.ejphar.2015.03.086
- Song Y, Lu M, Yuan H, et al. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med. 2020;20(2):714–726. doi: 10.3892/etm.2020.8789
- Rozniecki JJ, Dimitriadou V, Lambracht-Hall M, et al. Morphological and functional demonstration of rat dura mater mast cell–neuron interactions in vitro and in vivo. Brain Res. 1999;849(1–2):1–15. doi: 10.1016/S0006-8993(99)01855-7
- Koroleva K, Gafurov O, Guselnikova V, et al. Meningeal mast cells contribute to ATP-induced nociceptive firing in trigeminal nerve terminals: direct and indirect purinergic mechanisms triggering migraine pain. Front Cell Neurosci. 2019;13:195. doi: 10.3389/fncel.2019.00195
- Green DP, Limjunyawong N, Gour N, et al. A Mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron. 2019;101(3):412–420.e3. doi: 10.1016/j.neuron.2019.01.012
- Ramachandran R. Neurogenic inflammation and its role in migraine. Semin Immunopathol. 2018;40(3):301–314. doi: 10.1007/s00281-018-0676-y
- Dimitriadou V, Henry P, Brochet B, et al. Cluster headache: ultrastructural evidence for mast cell degranulation and interaction with nerve fibres in the human temporal artery. Cephalalgia. 1990;10(5):221–228. doi: 10.1046/j.1468-2982.1990.1005221.x
- Hassler SN, Ahmad FB, Burgos-Vega CC, et al. Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia. 2019;39(1):111–122. doi: 10.1177/0333102418779548
- Monro J, Carini C, Brostoff J. Migraine is a food-allergic disease. Lancet. 1984;2(8405):719–721. doi: 10.1016/s0140-6736(84)92626-6
- Karpova MI, Simbirtsev AS, Shamurov YS. State of immune system in patients with primary headaches. Medical Immunology. 2010;12(6):529–536. (In Russ.). doi: 10.15789/1563-0625-2010-6-529-536
- Iljazi A, Ayata C, Ashina M, Hougaard A. The role of endothelin in the pathophysiology of migraine – a systematic review. Curr Pain Headache Rep. 2018;22(4):27. doi: 10.1007/s11916-018-0682-8
- Yuan H, Silberstein SD. Histamine and migraine. Headache. 2018;58(1):184–193. doi: 10.1111/head.13164
- Karatygina NV. Non-steroidal anti-inflammatory medicines in complex therapy of migraine. Russian Medical Journal. 2015;23(30):12–15. (In Russ.)
- Goldstein J, Hagen M, Gold M. Results of a multicenter, double-blind, randomized, parallel-group, placebo-controlled, single-dose study comparing the fixed combination of acetaminophen, acetylsalicylic acid, and caffeine with ibuprofen for acute treatment of patients with severe migraine. Cephalalgia. 2014;34(13):1070–1078. doi: 10.1177/0333102414530527
- Olness K, Hall H, Rozniecki JJ, et al. Mast cell activation in children with migraine before and after training in self-regulation. Headache. 1999;39(2):101–107. doi: 10.1046/j.1526-4610.1999.3902101.x
- Worm J, Falkenberg K, Olesen J. Histamine and migraine revisited: mechanisms and possible drug targets. J Headache Pain. 2019;20(1):30. doi: 10.1186/s10194-019-0984-1
- Nurkhametova DF, Koroleva KS, Gafurov OS, et al. Mast cell mediators as pain triggers in migraine: comparison of histamine and serotonin in the activation of primary afferents in the meninges in rats. Neurosci Behav Physiol. 2020;50(7):900–906. doi: 10.1007/s11055-020-00983-2
- Togha M, Malamiri RA, Rashidi-Ranjbar N, et al. Efficacy and safety of cinnarizine in the prophylaxis of migraine headaches in children: an open, randomized comparative trial with propranolol. Acta Neurol Belg. 2012;112(1):51–55. doi: 10.1007/s13760-012-0011-7
- Levy D. Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: the role of immuno-vascular interactions and cortical spreading depression. Curr Pain Headache Rep. 2012;16(3):270–277. doi: 10.1007/s11916-012-0255-1
- Borkum JM. Migraine triggers and oxidative stress: a narrative review and synthesis. Headache. 2016;56(1):12–35. doi: 10.1111/head.12725
Supplementary files
