Mast cells and neuroinflammation in pathogenesis of neurologic and psychiatric diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review summarizes current data on the role of neuroinflammation and mast cells in the pathogenesis of nervous and mental diseases, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, depression, autism, migraine, schizophrenia and some others. The contribution of neuroinflammation to the pathogenesis of many of these diseases has been demonstrated. The involvement of mast cells in the development of the neuroinflammatory process has with varying degrees of evidence been shown for multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease and migraine. There is still no convincing evidence that mast cells contribute to neuroinflammation in Parkinson’s disease, depression, schizophrenia and autism spectrum disorder, although it is possible that they play a role in the pathogenesis of these diseases. Data on the causal role of neuroinflammation and mast cells in the development of neuropsychiatric diseases may become the basis for the development of new approaches to their pharmacological treatment. The review provides data on the first clinical trials of anti-inflammatory and mast cell activity-modulating drugs for the treatment of migraine, Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclerosis.

About the authors

Igor P. Grigorev

Institute of Experimental Medicine

Author for correspondence.
Email: ipg-iem@yandex.ru
ORCID iD: 0000-0002-3535-7638

PhD (Biology), Senior Researcher of the Department of General and Special Morphology

Russian Federation, Saint Petersburg

Dmitrii E. Korzhevskii

Institute of Experimental Medicine

Email: DEK2@yandex.ru
ORCID iD: 0000-0002-2456-8165
SPIN-code: 3252-3029
Scopus Author ID: 12770589000

MD, PhD, DSc (Medicine), Professor of the RAS, Head of the Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology

Russian Federation, Saint Petersburg

References

  1. Komi EAD, Wohrl S, Bielory L. Mast cell biology at molecular level: a comprehensive review. Clin Rev Allergy Immunol. 2020;58(3):342–365. doi: 10.1007/s12016-019-08769-2
  2. Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018;282(1):121–150. doi: 10.1111/imr.12634
  3. Neumann J. Ueber das Vorkommen der sogenannten “Mastzellen” bei pathologischen Veranderungen des Gehirns. Archiv f. Pathol. Anat. 1890;122:378–380. doi: 10.1007/bf01884453
  4. Grigorev IP, Korzhevskii DE. Mast cells in the vertebrate brain: localization and functions. Journal of Evolutionary Biochemistry and Physiology. 2021;57(1):16–33. doi: 10.1134/S0022093021010026
  5. Fiala M, Chattopadhay M, La Cava A, et al. IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients. J Neuroinflammation. 2010;7:76. doi: 10.1186/1742-2094-7-76
  6. Kempuraj D, Thangavel R, Selvakumar GP, et al. Mast cell proteases activate astrocytes and glia-neurons and release interleukin-33 by activating p38 and ERK1/2 MAPKs and NF-B. Mol Neurobiol. 2019;56(3):1681–1693. doi: 10.1007/s12035-018-1177-7
  7. Dong H, Zhang X, Wang Y, et al. Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol. 2017;54(2):997–1007. doi: 10.1007/s12035-016-9720-x
  8. Zhang X, Wang Y, Dong H, et al. Induction of microglial activation by mediators released from mast cells. Cell Physiol Biochem. 2016;38(4):1520–1531. doi: 10.1159/000443093
  9. Kempuraj D, Mentor S, Thangavel R, et al. Mast cells in stress, pain, blood-brain barrier, neuroinflammation and Alzheimer’s disease. Front Cell Neurosci. 2019;13:54. doi: 10.3389/fncel.2019.00054
  10. Ribatti D. The crucial role of mast cells in blood-brain barrier alterations. Exp Cell Res. 2015;338(1):119–125. doi: 10.1016/j.yexcr.2015.05.013
  11. Pinke KH, Zorzella-Pezavento SFG, Lara VS, Sartori A. Should mast cells be considered therapeutic targets in multiple sclerosis? Neural Regen Res. 2020;15(11):1995–2007. doi: 10.4103/1673-5374.282238
  12. Sandhu JK, Kulka M. Decoding mast cell-microglia communication in neurodegenerative diseases. Int J Mol Sci. 2021;22(3):1093. doi: 10.3390/ijms22031093
  13. Ibrahim MZM, Reder AT, Lawand R, et al. The mast cells of the multiple sclerosis brain. J Neuroimmunol. 1996;70(2):131–138. doi: 10.1016/S0165-5728(96)00102-6
  14. Krüger PG. Multiple sclerosis: a mast cell mediated psycho-somatic disease? World J Neurosci. 2018;8(4):444–453. doi: 10.4236/wjns.2018.84035
  15. Conti P, Kempuraj D. Important role of mast cells in multiple sclerosis. Mult Scler Relat Disord. 2016;5:77–80. doi: 10.1016/j.msard.2015.11.005
  16. Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 2018;12:72. doi: 10.3389/fncel.2018.00072
  17. Kim DY, Jeoung D, Ro JY. Signaling pathways in the activation of mast cells cocultured with astrocytes and colocalization of both cells in experimental allergic encephalomyelitis. J Immunol. 2010;185(1):273–283. doi: 10.4049/jimmunol.1000991
  18. Letourneau R, Rozniecki JJ, Dimitriadou V, Theoharides TC. Ultrastructural evidence of brain mast cell activation without degranulation in monkey experimental allergic encephalomyelitis. J Neuroimmunol. 2003;145(1–2):18–26. doi: 10.1016/j.jneuroim.2003.09.004
  19. Rodrigues F, Edjlali M, Georgin-Lavialle S, et al. Neuroinflammatory disorders and mastocytosis: A possible association? J Allergy Clin Immunol Pract. 2019;7(8):2878–2881.e1. doi: 10.1016/j.jaip.2019.04.033
  20. Smith JH, Butterfield JH, Pardanani A, et al. Neurologic symptoms and diagnosis in adults with mast cell disease. Clin Neurol Neurosurg. 2011;113(7):570–574. doi: 10.1016/j.clineuro.2011.05.002
  21. Brown MA, Weinberg RB. Mast cells and innate lymphoid cells: underappreciated players in CNS autoimmune demyelinating disease. Front Immunol. 2018;9:514. doi: 10.3389/fimmu.2018.00514
  22. Li H, Nourbakhsh B, Safavi F, et al. Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. J Immunol. 2011;187(1):274–282. doi: 10.4049/jimmunol.1003603
  23. Medic N, Lorenzon P, Vita F, et al. Mast cell adhesion induces cytoskeletal modifications and programmed cell death in oligodendrocytes. J Neuroimmunol. 2009;218(1–2):57–66. doi: 10.1016/j.jneuroim.2009.10.011
  24. Russi AE, Walker-Caulfield ME, Brown MA. Mast cell inflammasome activity in the meninges regulates EAE disease severity. Clin Immunol. 2018;189:14–22. doi: 10.1016/j.clim.2016.04.009
  25. Batoulis H, Addicks K, Kuerten S. Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T(H)1 paradigm. Ann Anat. 2010;192(4):179–193. doi: 10.1016/j.aanat.2010.06.006
  26. Holman DW, Klein RS, Ransohoff RM. The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta. 2011;1812(2):220–230. doi: 10.1016/j.bbadis.2010.07.019
  27. Russi AE, Walker-Caulfield ME, Guo Y, et al. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity. J Autoimmun. 2016;73:100–110. doi: 10.1016/j.jaut.2016.06.015
  28. Adzemovic MV, Zeitelhofer M, Eriksson U, et al. Imatinib ameliorates neuroinflammation in a rat model of multiple sclerosis by enhancing blood-brain barrier integrity and by modulating the peripheral immune response. PLoS One. 2013;8(2):e56586. doi: 10.1371/journal.pone.0056586
  29. Folch J, Petrov D, Ettcheto M, et al. Masitinib for the treatment of mild to moderate Alzheimer’s disease. Expert Rev Neurother. 2015;15(6):587–596. doi: 10.1586/14737175.2015.1045419
  30. Giovannoni G, Comi G, Cook S, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):416–426. doi: 10.1056/NEJMoa0902533
  31. Menzfeld C, John M, van Rossum D, et al. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia. 2015;63(6):1083–1099. doi: 10.1002/glia.22803
  32. Montalban X, Arnold DL, Weber MS, et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med. 2019;380(25):2406–2417. doi: 10.1056/NEJMoa1901981
  33. Pinke KH, Zorzella-Pezavento SFG, de Campos Fraga-Silva TF, et al. Calming down mast cells with ketotifen: a potential strategy for multiple sclerosis therapy? Neurotherapeutics. 2020;17(1):218–234. doi: 10.1007/s13311-019-00775-8
  34. Yong HY, McKay KA, Daley CGJ, Tremlett H. Drug exposure and the risk of multiple sclerosis: A systematic review. Pharmacoepidemiol Drug Saf. 2018;27(7):133–139. doi: 10.1002/pds.4357
  35. Maslinska D, Laure-Kamionowska M, Maslinski KT, et al. Distribution of tryptase-containing mast cells and metallothionein reactive astrocytes in human brains with amyloid deposits. Inflamm. Res. 2007;56 Suppl 1:S17–S18. doi: 10.1007/s00011-006-0508-8
  36. Harcha PA, Vargas A, Yi C, et al. Hemichannels are required for amyloid -peptide-induced degranulation and are activated in brain mast cells of APPswe/PS1dE9 mice. J Neurosci. 2015;35(25):9526–9538. doi: 10.1523/JNEUROSCI.3686-14.2015
  37. Swardfager W, Lanctot K, Rothenburg L, et al. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry. 2010;68(10):930–941. doi: 10.1016/j.biopsych.2010.06.012
  38. Malashenkova IK, Krynskiy SA, Khailov NA, et al. The role of cytokines in memory consolidation. Biol Bull Rev. 2016;6(2):126–140. doi: 10.1134/S2079086416020055
  39. Zhang X, Yao H, Qian Q, et al. Cerebral mast cells participate in postoperative cognitive dysfunction by promoting astrocyte activation. Cell Physiol Biochem. 2016;40(1–2): 104–116. doi: 10.1159/000452528
  40. Gupta PP, Pandey RD, Jha D, et al. Role of traditional nonsteroidal anti-inflammatory drugs in Alzheimer’s disease: a meta-analysis of randomized clinical trials. Am J Alzheimers Dis Other Demen. 2015;30(2):178–182. doi: 10.1177/1533317514542644
  41. McGeer PL, Guo JP, Lee M, et al. Alzheimer’s disease can be spared by nonsteroidal anti-inflammatory drugs. J Alzheimers Dis. 2018;62(3):1219–1222. doi: 10.3233/JAD-170706
  42. Safety and efficacy study of ALZT-OP1 in subjects with evidence of early Alzheimer’s disease (COGNITE). Available from: https://clinicaltrials.gov/ct2/show/NCT02547818. Accessed: June 21, 2021.
  43. Graves MC, Fiala M, Dinglasan LA, et al. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004;5(4):213–219. doi: 10.1080/14660820410020286
  44. Jones MK, Nair A, Gupta M. Mast cells in neurodegenerative disease. Front Cell Neurosci. 2019;13:171. doi: 10.3389/fncel.2019.00171
  45. Rodrigues MC, Hernandez-Ontiveros DG, Louis MK, et al. Neurovascular aspects of amyotrophic lateral sclerosis. Int Rev Neurobiol. 2012;102:91–106. doi: 10.1016/B978-0-12-386986-9.00004-1
  46. Kempuraj D, Thangavel R, Selvakumar GP, et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. 2017;11:216. doi: 10.3389/fncel.2017.00216
  47. Trias E, King PH, Si Y, et al. Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS. JCI Insight. 2018;3(19):e123249. doi: 10.1172/jci.insight.123249
  48. Kuhle J, Lindberg RL, Regeniter A, et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol. 2009;16(6):771–774. doi: 10.1111/j.1468-1331.2009.02560.x
  49. Mitchell RM, Freeman WM, Randazzo WT, et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology. 2009;72(1):14–19. doi: 10.1212/01.wnl.0000333251.36681.a5
  50. Rentzos M, Rombos A, Nikolaou C, et al. Interleukin-15 and interleukin-12 are elevated in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Eur Neurol. 2010;63(5):285–290. doi: 10.1159/000287582
  51. Granucci EJ, Griciuc A, Mueller KA, et al. Cromolyn sodium delays disease onset and is neuroprotective in the SOD1(G93A) Mouse Model of amyotrophic lateral sclerosis. Sci Rep. 2019;9(1):17728. doi: 10.1038/s41598-019-53982-w
  52. Theoharides TC, Tsilioni I. Amyotrophic lateral sclerosis, neuroinflammation, and cromolyn. Clin Ther. 2020;42(3):546–549. doi: 10.1016/j.clinthera.2020.01.010
  53. Mora JS, Genge A, Chio A, et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(1–2):5–14. doi: 10.1080/21678421.2019.1632346
  54. Guzman-Martinez L, Maccioni RB, Andrade V, et al. Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol. 2019;10:1008. doi: 10.3389/fphar.2019.01008
  55. Schwab AD, Thurston MJ, Machhi J, et al. Immunotherapy for Parkinson’s disease. Neurobiol Dis. 2020;137:104760. doi: 10.1016/j.nbd.2020.104760
  56. Hong GU, Cho JW, Kim SY, et al. Inflammatory mediators resulting from transglutaminase 2 expressed in mast cells contribute to the development of Parkinson’s disease in a mouse model. Toxicol Appl Pharmacol. 2018;358:10–22. doi: 10.1016/j.taap.2018.09.003
  57. Kempuraj D, Thangavel R, Fattal R, et al. Mast cells release chemokine CCL2 in response to parkinsonian toxin 1-methyl-4-phenyl-pyridinium (MPP(+)). Neurochem Res. 2016;41(5):1042–1049. doi: 10.1007/s11064-015-1790-z
  58. Liu JQ, Chu SF, Zhou X, et al. Role of chemokines in Parkinson’s disease. Brain Res Bull. 2019;152:11–18. doi: 10.1016/j.brainresbull.2019.05.020
  59. Selvakumar GP, Ahmed ME, Thangavel R, et al. A role for glia maturation factor dependent activation of mast cells and microglia in MPTP induced dopamine loss and behavioural deficits in mice. Brain Behav Immun. 2020;87:429–443. doi: 10.1016/j.bbi.2020.01.013
  60. Jones MK, Nair A, Gupta M. Mast cells in neurodegenerative disease. Front Cell Neurosci. 2019;13:171. doi: 10.3389/fncel.2019.00171
  61. Moller T. Neuroinflammation in Huntington’s disease. J Neural Transm (Vienna). 2010;117(8):1001–1008. doi: 10.1007/s00702-010-0430-7
  62. Maes M. A review on the acute phase response in major depression. Rev Neurosci. 1993;4(4):407–416. doi: 10.1515/REVNEURO.1993.4.4.407
  63. Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;81:24–40. doi: 10.1016/j.bbi.2019.06.015
  64. Eswarappa M, Neylan TC, Whooley MA, et al. Inflammation as a predictor of disease course in posttraumatic stress disorder and depression: A prospective analysis from the Mind Your Heart Study. Brain Behav Immun. 2019;75:220–227. doi: 10.1016/j.bbi.2018.10.012
  65. Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–1709. doi: 10.1038/mp.2016.3
  66. Hiles SA, Baker AL, de Malmanche T, Attia J. Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis. Psychol Med. 2012;42(10):2015–2026. doi: 10.1017/S0033291712000128
  67. Milenkovic VM, Stanton EH, Nothdurfter C, et al. The role of chemokines in the pathophysiology of major depressive disorder. Int J Mol Sci. 2019;20(9):2283. doi: 10.3390/ijms20092283
  68. Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44(1):75–83. doi: 10.1093/schbul/sbx035
  69. Müller N. Immunology of major depression. Neuroimmunomodulation. 2014;21(2–3):123–130. doi: 10.1159/000356540
  70. Dean B, Tawadros N, Scarr E, Gibbons AS. Regionally-specific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder. J Affect Disord. 2010;120(1–3):245–248. doi: 10.1016/j.jad.2009.04.027
  71. Kessing LV, Rytgaard HC, Gerds TA, et al. New drug candidates for depression – a nationwide population-based study. Acta Psychiatr Scand. 2019;139(1):68–77. doi: 10.1111/acps.12957
  72. Fourrier C, Sampson E, Mills NT, Baune BT. Anti-inflammatory treatment of depression: study protocol for a randomised controlled trial of vortioxetine augmented with celecoxib or placebo. Trials. 2018;19(1):447. doi: 10.1186/s13063-018-2829-7
  73. Quinn AL, Dean OM, Davey CG, et al. Youth Depression Alleviation-Augmentation with an anti-inflammatory agent (YoDA-A): protocol and rationale for a placebo-controlled randomized trial of rosuvastatin and aspirin. Early Interv Psychiatry. 2018;12(1):45–54. doi: 10.1111/eip.12280
  74. Suarez AL, Feramisco JD, Koo J, Steinhoff M. Psychoneuroimmunology of psychological stress and atopic dermatitis: pathophysiologic and therapeutic updates. Acta Derm Venereol. 2012;92(1):7–15. doi: 10.2340/00015555-1188
  75. Häuser W, Janke KH, Klump B, Hinz A. Anxiety and depression in patients with inflammatory bowel disease: comparisons with chronic liver disease patients and the general population. Inflamm Bowel Dis. 2011;17(2):621–632. doi: 10.1002/ibd.21346
  76. Maes M, Kubera M, Obuchowiczwa E, et al. Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative and nitrosative stress pathways. Neuro Endocrinol Lett. 2011;32(1):7–24.
  77. DellaGioia N, Hannestad J. A critical review of human endotoxin administration as an experimental paradigm of depression. Neurosci Biobehav Rev. 2010;34(1):130–143. doi: 10.1016/j.neubiorev.2009.07.014
  78. Borsini A, Pariante CM, Zunszain PA, et al. The role of circulatory systemic environment in predicting interferon-alpha-induced depression: The neurogenic process as a potential mechanism. Brain Behav Immun. 2019;81:220–227. doi: 10.1016/j.bbi.2019.06.018
  79. Capuron L, Ravaud A, Miller AH, Dantzer R. Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy. Brain Behav Immun. 2004;18(3):205–213. doi: 10.1016/j.bbi.2003.11.004
  80. Capuron L, Hauser P, Hinze-Selch D, et al. Treatment of cytokine-induced depression. Brain Behav Immun. 2002;16(5):575–580. doi: 10.1016/s0889-1591(02)00007-7
  81. Eller T, Vasar V, Shlik J, Maron E. Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(2):445–450. doi: 10.1016/j.pnpbp.2007.09.015
  82. Boddaert N, Salvador A, Chandesris MO, et al. Neuroimaging evidence of brain abnormalities in mastocytosis. Transl Psychiatry. 2017;7(8):e1197. doi: 10.1038/tp.2017.137
  83. Georgin-Lavialle S, Gaillard R, Moura D, Hermine O. Mastocytosis in adulthood and neuropsychiatric disorders. Transl Res. 2016;174:77–85.e1. doi: 10.1016/j.trsl.2016.03.013
  84. Kano M, Fukudo S, Tashiro A, et al. Decreased histamine H1 receptor binding in the brain of depressed patients. Eur J Neurosci. 2004;20(3):803–810. doi: 10.1111/j.1460-9568.2004.03540.x
  85. Lamberti C, Ipponi A, Bartolini A, et al. Antidepressant-like effects of endogenous histamine and of two histamine H1 receptor agonists in the mouse forced swim test. Br J Pharmacol. 1998;123(7):1331–1336. doi: 10.1038/sj.bjp.0701740
  86. Ushakov VL, Malashenkova IK, Krynskiy SA, et al. Basic cognitive architecture, systemic inflammation, and immune dysfunction in schizophrenia. Modern Technologies in Medicine. 2019;11(3):32–40. doi: 10.17691/stm2019.11.3.04
  87. Pandurangi AK, Buckley PF. Inflammation, antipsychotic drugs, and evidence for effectiveness of anti-inflammatory agents in schizophrenia. Curr Top Behav Neurosci. 2020;44:227–244. doi: 10.1007/7854_2019_91
  88. Angelidou A, Asadi S, Alysandratos KD, et al. Perinatal stress, brain inflammation and risk of autism-review and proposal. BMC Pediatr. 2012;12:89. doi: 10.1186/1471-2431-12-89
  89. Abdallah MW, Larsen N, Grove J, et al. Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders. World J Biol Psychiatry. 2013;14(7):528–538. doi: 10.3109/15622975.2011.639803
  90. Goines PE, Croen LA, Braunschweig D, et al. Increased midgestational IFN-, IL-4 and IL-5 in women bearing a child with autism: A case-control study. Mol Autism. 2011;2:13. doi: 10.1186/2040-2392-2-13
  91. Ferretti CJ, Hollander E. The role of inflammation in autism spectrum disorder. In: Müller N, Myint AM, Schwarz M (eds). Immunology and Psychiatry. Current topics in neurotoxicity. Cham: Springer; 2015;8:275–312. doi: 10.1007/978-3-319-13602-8_14
  92. Ahmad SF, Ansari MA, Nadeem A, et al. Elevated IL-16 expression is associated with development of immune dysfunction in children with autism. Psychopharmacology (Berl). 2019;236(2):831–838. doi: 10.1007/s00213-018-5120-4
  93. Siniscalco D, Schultz S, Brigida AL, Antonucci N. Inflammation and neuro-immune dysregulations in autism spectrum disorders. Pharmaceuticals (Basel). 2018;11(2):56. doi: 10.3390/ph11020056
  94. Chez MG, Dowling T, Patel PB, et al. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol. 2007;36(6):361–365. doi: 10.1016/j.pediatrneurol.2007.01.012
  95. Vargas DL, Nascimbene C, Krishnan C, et al. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81. doi: 10.1002/ana.20315
  96. Li X, Chauhan A, Sheikh AM, et al. Elevated immune response in the brain of autistic patients. J Neuroimmunol. 2009;207(1–2): 111–116. doi: 10.1016/j.jneuroim.2008.12.002
  97. Wei H, Zou H, Sheikh AM, et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation. 2011;8:52. doi: 10.1186/1742-2094-8-52
  98. Theoharides TC. Autism spectrum disorders and mastocytosis. Int J Immunopathol Pharmacol. 2009;22(4):859–865. doi: 10.1177/039463200902200401
  99. Theoharides TC, Tsilioni I, Patel AB, Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry. 2016;6(6):e844. doi: 10.1038/tp.2016.77
  100. Theoharides TC. Is a subtype of autism an ‘allergy of the brain’? Clin Ther. 2013;35(5):584–591. doi: 10.1016/j.clinthera.2013.04.009
  101. Theoharides TC, Stewart JM, Panagiotidou S, Melamed I. Mast cells, brain inflammation and autism. Eur J Pharmacol. 2016;778:96–102. doi: 10.1016/j.ejphar.2015.03.086
  102. Song Y, Lu M, Yuan H, et al. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med. 2020;20(2):714–726. doi: 10.3892/etm.2020.8789
  103. Rozniecki JJ, Dimitriadou V, Lambracht-Hall M, et al. Morphological and functional demonstration of rat dura mater mast cell–neuron interactions in vitro and in vivo. Brain Res. 1999;849(1–2):1–15. doi: 10.1016/S0006-8993(99)01855-7
  104. Koroleva K, Gafurov O, Guselnikova V, et al. Meningeal mast cells contribute to ATP-induced nociceptive firing in trigeminal nerve terminals: direct and indirect purinergic mechanisms triggering migraine pain. Front Cell Neurosci. 2019;13:195. doi: 10.3389/fncel.2019.00195
  105. Green DP, Limjunyawong N, Gour N, et al. A Mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron. 2019;101(3):412–420.e3. doi: 10.1016/j.neuron.2019.01.012
  106. Ramachandran R. Neurogenic inflammation and its role in migraine. Semin Immunopathol. 2018;40(3):301–314. doi: 10.1007/s00281-018-0676-y
  107. Dimitriadou V, Henry P, Brochet B, et al. Cluster headache: ultrastructural evidence for mast cell degranulation and interaction with nerve fibres in the human temporal artery. Cephalalgia. 1990;10(5):221–228. doi: 10.1046/j.1468-2982.1990.1005221.x
  108. Hassler SN, Ahmad FB, Burgos-Vega CC, et al. Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia. 2019;39(1):111–122. doi: 10.1177/0333102418779548
  109. Monro J, Carini C, Brostoff J. Migraine is a food-allergic disease. Lancet. 1984;2(8405):719–721. doi: 10.1016/s0140-6736(84)92626-6
  110. Karpova MI, Simbirtsev AS, Shamurov YS. State of immune system in patients with primary headaches. Medical Immunology. 2010;12(6):529–536. (In Russ.). doi: 10.15789/1563-0625-2010-6-529-536
  111. Iljazi A, Ayata C, Ashina M, Hougaard A. The role of endothelin in the pathophysiology of migraine – a systematic review. Curr Pain Headache Rep. 2018;22(4):27. doi: 10.1007/s11916-018-0682-8
  112. Yuan H, Silberstein SD. Histamine and migraine. Headache. 2018;58(1):184–193. doi: 10.1111/head.13164
  113. Karatygina NV. Non-steroidal anti-inflammatory medicines in complex therapy of migraine. Russian Medical Journal. 2015;23(30):12–15. (In Russ.)
  114. Goldstein J, Hagen M, Gold M. Results of a multicenter, double-blind, randomized, parallel-group, placebo-controlled, single-dose study comparing the fixed combination of acetaminophen, acetylsalicylic acid, and caffeine with ibuprofen for acute treatment of patients with severe migraine. Cephalalgia. 2014;34(13):1070–1078. doi: 10.1177/0333102414530527
  115. Olness K, Hall H, Rozniecki JJ, et al. Mast cell activation in children with migraine before and after training in self-regulation. Headache. 1999;39(2):101–107. doi: 10.1046/j.1526-4610.1999.3902101.x
  116. Worm J, Falkenberg K, Olesen J. Histamine and migraine revisited: mechanisms and possible drug targets. J Headache Pain. 2019;20(1):30. doi: 10.1186/s10194-019-0984-1
  117. Nurkhametova DF, Koroleva KS, Gafurov OS, et al. Mast cell mediators as pain triggers in migraine: comparison of histamine and serotonin in the activation of primary afferents in the meninges in rats. Neurosci Behav Physiol. 2020;50(7):900–906. doi: 10.1007/s11055-020-00983-2
  118. Togha M, Malamiri RA, Rashidi-Ranjbar N, et al. Efficacy and safety of cinnarizine in the prophylaxis of migraine headaches in children: an open, randomized comparative trial with propranolol. Acta Neurol Belg. 2012;112(1):51–55. doi: 10.1007/s13760-012-0011-7
  119. Levy D. Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: the role of immuno-vascular interactions and cortical spreading depression. Curr Pain Headache Rep. 2012;16(3):270–277. doi: 10.1007/s11916-012-0255-1
  120. Borkum JM. Migraine triggers and oxidative stress: a narrative review and synthesis. Headache. 2016;56(1):12–35. doi: 10.1111/head.12725

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Grigorev I.P., Korzhevskii D.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».