核心脏病学放射性核素成像模拟计算机建模虚拟平台。与临床数据比较
- 作者: Denisova N.V.1,2, Gurko M.A.1,2, Kolinko I.P.1,2, Ansheles A.A.3, Sergienko V.B.3
-
隶属关系:
- Novosibirsk State University
- Khristianovich Institute of Theoretical and Applied Mechanics
- National Medical Research Centre of Cardiology Named After Academician E.I. Chazov
- 期: 卷 4, 编号 4 (2023)
- 页面: 492-508
- 栏目: 原创性科研成果
- URL: https://bakhtiniada.ru/DD/article/view/262955
- DOI: https://doi.org/10.17816/DD595696
- ID: 262955
如何引用文章
详细
论证。在放射性核素成像领域,人体临床试验(in vivo)因辐射负荷和伦理规范而受到限制。因此,数学建模方法和模拟计算机试验(in silico)方法越来越重要。这些方法以数值模型为基础。在英文文献中,这种方法被称为“Virtual clinical trials”(虚拟临床试验)。
该研究的目的是利用放射性药物99mTc-MIBI,开发单光子发射计算机断层扫描及计算机断层扫描对心肌灌注进行放射性核素成像模拟建模的软件工具;开展旨在提高单光子发射计算机断层扫描准确度的研究。
材料与方法。我们开发了“核心脏病学单光子发射计算机断层扫描及计算机断层扫描方法模拟测试虚拟平台”综合软件。开发综合软件的时候,我们使用了患者、扫描仪的数字模型和心肌评估,心肌评估是使用“极坐标靶心图”形式的左心室数字图像进行的。通过与临床数据对比,对软件系统进行了验证。临床数据是在以E.I.CHAZOV院士命名的国家心脏病学医学研究中心(NATIONAL MEDICAL RESEARCH CENTRE OF CARDIOLOGY NAMED AFTER ACADEMICIAN E.I.CHAZOV,莫斯科)获得的。我们还进行了模拟计算机测试,在测试期间研究了心肌评估的准确度,这取决于极坐标靶心图归一化的方法和重建算法中校正因子的考虑。
结果。模拟测试结果表明了,左心室心肌灌注的评估很大程度上取决于极坐标靶心图归一化的方法和重建算法中校正因子的考虑。使用心肌正常区域活动的平均值计算归一化因子时,估算结果最为准确。结果表明了,用强度最大的像素进行归一化的常见方法会导致误 差。“虚拟”测试的结果与临床观察完全一致。
结论。从心肌活性累积的相对归一化值过渡到绝对定量估计值,可以消除现有的局限性和不确定性,是提高核心脏病学中单光子发射计算机断层扫描及计算机断层扫描方法诊断准确度的主要条件。
关键词
作者简介
Natalya V. Denisova
Novosibirsk State University; Khristianovich Institute of Theoretical and Applied Mechanics
编辑信件的主要联系方式.
Email: NVDenisova2011@mail.ru
ORCID iD: 0000-0001-9374-1753
SPIN 代码: 4928-8185
Dr. Sci. (Phys.-Math.), Professor
俄罗斯联邦, Novosibirsk; NovosibirskMikhail A. Gurko
Novosibirsk State University; Khristianovich Institute of Theoretical and Applied Mechanics
Email: m.gurko@g.nsu.ru
ORCID iD: 0000-0002-6154-172X
SPIN 代码: 3214-5765
俄罗斯联邦, Novosibirsk; Novosibirsk
Inna P. Kolinko
Novosibirsk State University; Khristianovich Institute of Theoretical and Applied Mechanics
Email: kiina131313@gmail.com
ORCID iD: 0009-0001-6779-1535
SPIN 代码: 1625-6043
俄罗斯联邦, Novosibirsk; Novosibirsk
Alexey A. Ansheles
National Medical Research Centre of Cardiology Named After Academician E.I. Chazov
Email: aansheles@gmail.com
ORCID iD: 0000-0002-2675-3276
SPIN 代码: 7781-6310
MD, Dr. Sci. (Med.), Assistant Professor
俄罗斯联邦, MoscowVladimir B. Sergienko
National Medical Research Centre of Cardiology Named After Academician E.I. Chazov
Email: vbsergienko@yandex.ru
ORCID iD: 0000-0002-0487-6902
SPIN 代码: 4918-3443
MD, Dr. Sci. (Med.), Professor
俄罗斯联邦, Moscow参考
- Ansheles AA, Sergienko VB. Yadernaya Kardiologiya. Sergienko VB, editor. Moscow: FGBU «NMITs kardiologii» Minzdrava Rossii; 2021. (In Russ).
- Ficaro E, Lee B, Kritzman J, Corbett J. Corridor4DM: The Michigan method for quantitative nuclear cardiology. Journal of Nuclear Cardiology. 2007;14(4):455–465. doi: 10.1016/j.nuclcard.2007.06.006
- Garcia E, Faber T, Cooke C, et al. The increasing role of quantification in clinical nuclear cardiology: The Emory approach. Journal of Nuclear Cardiology. 2007;14(4):420–432. doi: 10.1016/j.nuclcard.2007.06.009
- Germano G, Kavanagh P, Slomka P, et al. Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach. Journal of Nuclear Cardiology. 2007;14(4):433–454. doi: 10.1016/j.nuclcard.2007.06.008
- Wolak A. Quantitative myocardial-perfusion SPECT: Comparison of three state-of-the-art software packages. Journal of Nuclear Cardiology. 2008;15(1):27–34. doi: 10.1016/j.nuclcard.2007.09.020
- Germano G. Quantitative measurements of myocardial perfusion and function from SPECT (and PET) studies depend on the method used to perform those measurements. Journal of Nuclear Cardiology. 2018;25(3):925–928. doi: 10.1007/s12350-016-0757-z
- Abadi E, Segars WP, Tsui BMW, et al. Virtual clinical trials in medical imaging: a review. Journal of Medical Imaging. 2020;7(4):1. doi: 10.1117/1.JMI.7.4.042805
- Denisova NV, Ansheles AA. A study of false apical defects in myocardial perfusion imaging with SPECT/CT. Biomedical Physics & Engineering Express. 2018;4(6):065018. doi: 10.1088/2057-1976/aae414
- Denisova N, Ondar M, Kertesz H, Beyer T. Development of anthropomorphic mathematical phantoms for simulations of clinical cases in diagnostic nuclear medicine. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2023;11(3):433–441. doi: 10.1080/21681163.2022.2074308
- Denisova NV. Computational Phantoms for Medical Radiology. Medical Radiology and Radiation Safety. 2022;67(6):51–61. doi: 10.33266/1024-6177-2022-67-6-51-61
- Sinel’nikov RD, Sinel’nikov AYa, Sinel’nikov YaR. Atlas Anatomii Cheloveka. 2nd Volume. Moscow: Novaya volna; 2022. (In Russ).
- Patton JA, Turkington TG. SPECT/CT Physical Principles and Attenuation Correction. Journal of Nuclear Medicine Technology. 2008;36(1):1–10. doi: 10.2967/jnmt.107.046839
- Seltzer S. XCOM-Photon Cross Sections Database [Internet]. Gaithersburg (MD): NIST Standard Reference Database 8. [cited 2023 Oct 10]. Available from: https://www.nist.gov/pml/xcom-photon-cross-sections-database doi: 10.18434/T48G6X
- Ivanchenko VN, Incerti S, Allison J, et al. Geant4 electromagnetic physics: improving simulation performance and accuracy. In: Caruge D, Calvin C, Diop CM, Malvagi F, Trama JC, editorss. SNA + MC 2013 — Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo. doi: 10.1051/snamc/201403101
- Behlouli A, Visvikis D, Bert J. Improved Woodcock tracking on Monte Carlo simulations for medical applications. Physics in Medicine & Biology. 2018;63(22):225005. doi: 10.1088/1361-6560/aae937
- Shepp LA, Vardi Y. Maximum Likelihood Reconstruction for Emission Tomography. IEEE Transactions on Medical Imaging. 1982;1(2):113–122. doi: 10.1109/TMI.1982.4307558
- Nuyts J, Mortelmans L, Suetens P, Oosterlinck A, de Rou M. Model-based quantification of myocardial perfusion images from SPECT. Journal of nuclear medicine. 1989;30(12):1992–2001.
- Okuda K, Nakajima K, Hosoya T, et al. Quantification of myocardial perfusion SPECT using freeware package (cardioBull). Annals of Nuclear Medicine. 2011;25(8):571–579. doi: 10.1007/s12149-011-0504-0
- Ploskikh V, Kotina E. Challenges of gated myocardial perfusion SPECT processing. Cybernetics and Physics. 2021;10(3):171–177. doi: 10.35470/2226-4116-2021-10-3-171-177
- Turco A, Nuyts J, Gheysens O, et al. Lesion quantification and detection in myocardial 18F-FDG PET using edge-preserving priors and anatomical information from CT and MRI: a simulation study. EJNMMI Physics. 2016;3(1):9. doi: 10.1186/s40658-016-0145-4
- Verberne HJ, Acampa W, Anagnostopoulos C, et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. European Journal of Nuclear Medicine and Molecular Imaging. 2015;42(12):1929–1940. doi: 10.1007/s00259-015-3139-x
- Garcia EV, Slomka P, Moody JB, Germano G, Ficaro EP. Quantitative Clinical Nuclear Cardiology, Part 1: Established Applications. Journal of Nuclear Medicine. 2019;60(11):1507–1516. doi: 10.2967/jnumed.119.229799
- Ansheles AA. Specific features of interpretation of myocardial perfusion single-photon emission computed tomography with computed tomographic absorption correction. Journal of Radiology and Nuclear Medicine (Vestnik rentgenologii i radiologii). 2014;(2):5–20. (In Russ). doi: 10.20862/0042-4676-2014-0-2-5-20
补充文件
