Virtual platform for computer simulation of radionuclide imaging in nuclear cardiology: Comparison with clinical data

Мұқаба

Дәйексөз келтіру

Аннотация

BACKGROUND: In radionuclide imaging, in vivo human clinical studies are limited because of radiation exposure and ethical concerns; therefore, mathematical modeling and in silico computer simulations based on digital models are becoming increasingly important. In the English-language literature, this approach is called “virtual clinical trials.”

AIMS: This study aimed to develop software tools for the simulation of radionuclide visualization of myocardial perfusion by single-photon emission computed tomography combined with computed tomography using 99mTc-MIBI as the radiopharmaceutical and perform studies aimed at improving the accuracy of single-photon emission computed tomography.

MATERIALS AND METHODS: A software package “Virtual platform for simulations of single-photon emission computed tomography combined with computed tomography method in nuclear cardiology” was developed using digital patient models, a scanner, and assessment of the state of the myocardium using digital images of the left ventricle in the form of a “polar map.” Verification of the software package was performed by comparison with clinical data obtained at the National Medical Research Center of Cardiology Named After Academician E.I. Chazov (Moscow). Simulation computer tests were performed, in which the accuracy of assessing the state of the myocardium was assessed, depending on the approach to normalizing the polar map and corrective factors in the reconstruction algorithm.

RESULTS: The results of the simulation tests revealed that the assessment of left ventricular myocardial perfusion significantly depended on the method of normalizing the polar map and considered corrective factors in the reconstruction algorithm. The most accurate estimates were obtained by calculating the normalization coefficient from the average value of activity in the normal zone of the myocardium. The common approach to pixel normalization with maximum intensity can lead to errors. The results of the virtual trials were fully consistent with clinical observations.

CONCLUSIONS: The transition from relative normalized values of activity in the myocardium to absolute quantitative estimates may eliminate existing limitations and uncertainties and is the main condition for improving the diagnostic accuracy of single-photon emission computed tomography combined with computed tomography in nuclear cardiology.

Толық мәтін

##article.viewOnOriginalSite##

Авторлар туралы

Natalya Denisova

Novosibirsk State University; Khristianovich Institute of Theoretical and Applied Mechanics

Хат алмасуға жауапты Автор.
Email: NVDenisova2011@mail.ru
ORCID iD: 0000-0001-9374-1753
SPIN-код: 4928-8185

Dr. Sci. (Phys.-Math.), Professor

Ресей, Novosibirsk; Novosibirsk

Mikhail Gurko

Novosibirsk State University; Khristianovich Institute of Theoretical and Applied Mechanics

Email: m.gurko@g.nsu.ru
ORCID iD: 0000-0002-6154-172X
SPIN-код: 3214-5765
Ресей, Novosibirsk; Novosibirsk

Inna Kolinko

Novosibirsk State University; Khristianovich Institute of Theoretical and Applied Mechanics

Email: kiina131313@gmail.com
ORCID iD: 0009-0001-6779-1535
SPIN-код: 1625-6043
Ресей, Novosibirsk; Novosibirsk

Alexey Ansheles

National Medical Research Centre of Cardiology Named After Academician E.I. Chazov

Email: aansheles@gmail.com
ORCID iD: 0000-0002-2675-3276
SPIN-код: 7781-6310

MD, Dr. Sci. (Med.), Assistant Professor

Ресей, Moscow

Vladimir Sergienko

National Medical Research Centre of Cardiology Named After Academician E.I. Chazov

Email: vbsergienko@yandex.ru
ORCID iD: 0000-0002-0487-6902
SPIN-код: 4918-3443

MD, Dr. Sci. (Med.), Professor

Ресей, Moscow

Әдебиет тізімі

  1. Ansheles AA, Sergienko VB. Yadernaya Kardiologiya. Sergienko VB, editor. Moscow: FGBU «NMITs kardiologii» Minzdrava Rossii; 2021. (In Russ).
  2. Ficaro E, Lee B, Kritzman J, Corbett J. Corridor4DM: The Michigan method for quantitative nuclear cardiology. Journal of Nuclear Cardiology. 2007;14(4):455–465. doi: 10.1016/j.nuclcard.2007.06.006
  3. Garcia E, Faber T, Cooke C, et al. The increasing role of quantification in clinical nuclear cardiology: The Emory approach. Journal of Nuclear Cardiology. 2007;14(4):420–432. doi: 10.1016/j.nuclcard.2007.06.009
  4. Germano G, Kavanagh P, Slomka P, et al. Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach. Journal of Nuclear Cardiology. 2007;14(4):433–454. doi: 10.1016/j.nuclcard.2007.06.008
  5. Wolak A. Quantitative myocardial-perfusion SPECT: Comparison of three state-of-the-art software packages. Journal of Nuclear Cardiology. 2008;15(1):27–34. doi: 10.1016/j.nuclcard.2007.09.020
  6. Germano G. Quantitative measurements of myocardial perfusion and function from SPECT (and PET) studies depend on the method used to perform those measurements. Journal of Nuclear Cardiology. 2018;25(3):925–928. doi: 10.1007/s12350-016-0757-z
  7. Abadi E, Segars WP, Tsui BMW, et al. Virtual clinical trials in medical imaging: a review. Journal of Medical Imaging. 2020;7(4):1. doi: 10.1117/1.JMI.7.4.042805
  8. Denisova NV, Ansheles AA. A study of false apical defects in myocardial perfusion imaging with SPECT/CT. Biomedical Physics & Engineering Express. 2018;4(6):065018. doi: 10.1088/2057-1976/aae414
  9. Denisova N, Ondar M, Kertesz H, Beyer T. Development of anthropomorphic mathematical phantoms for simulations of clinical cases in diagnostic nuclear medicine. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2023;11(3):433–441. doi: 10.1080/21681163.2022.2074308
  10. Denisova NV. Computational Phantoms for Medical Radiology. Medical Radiology and Radiation Safety. 2022;67(6):51–61. doi: 10.33266/1024-6177-2022-67-6-51-61
  11. Sinel’nikov RD, Sinel’nikov AYa, Sinel’nikov YaR. Atlas Anatomii Cheloveka. 2nd Volume. Moscow: Novaya volna; 2022. (In Russ).
  12. Patton JA, Turkington TG. SPECT/CT Physical Principles and Attenuation Correction. Journal of Nuclear Medicine Technology. 2008;36(1):1–10. doi: 10.2967/jnmt.107.046839
  13. Seltzer S. XCOM-Photon Cross Sections Database [Internet]. Gaithersburg (MD): NIST Standard Reference Database 8. [cited 2023 Oct 10]. Available from: https://www.nist.gov/pml/xcom-photon-cross-sections-database doi: 10.18434/T48G6X
  14. Ivanchenko VN, Incerti S, Allison J, et al. Geant4 electromagnetic physics: improving simulation performance and accuracy. In: Caruge D, Calvin C, Diop CM, Malvagi F, Trama JC, editorss. SNA + MC 2013 — Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo. doi: 10.1051/snamc/201403101
  15. Behlouli A, Visvikis D, Bert J. Improved Woodcock tracking on Monte Carlo simulations for medical applications. Physics in Medicine & Biology. 2018;63(22):225005. doi: 10.1088/1361-6560/aae937
  16. Shepp LA, Vardi Y. Maximum Likelihood Reconstruction for Emission Tomography. IEEE Transactions on Medical Imaging. 1982;1(2):113–122. doi: 10.1109/TMI.1982.4307558
  17. Nuyts J, Mortelmans L, Suetens P, Oosterlinck A, de Rou M. Model-based quantification of myocardial perfusion images from SPECT. Journal of nuclear medicine. 1989;30(12):1992–2001.
  18. Okuda K, Nakajima K, Hosoya T, et al. Quantification of myocardial perfusion SPECT using freeware package (cardioBull). Annals of Nuclear Medicine. 2011;25(8):571–579. doi: 10.1007/s12149-011-0504-0
  19. Ploskikh V, Kotina E. Challenges of gated myocardial perfusion SPECT processing. Cybernetics and Physics. 2021;10(3):171–177. doi: 10.35470/2226-4116-2021-10-3-171-177
  20. Turco A, Nuyts J, Gheysens O, et al. Lesion quantification and detection in myocardial 18F-FDG PET using edge-preserving priors and anatomical information from CT and MRI: a simulation study. EJNMMI Physics. 2016;3(1):9. doi: 10.1186/s40658-016-0145-4
  21. Verberne HJ, Acampa W, Anagnostopoulos C, et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. European Journal of Nuclear Medicine and Molecular Imaging. 2015;42(12):1929–1940. doi: 10.1007/s00259-015-3139-x
  22. Garcia EV, Slomka P, Moody JB, Germano G, Ficaro EP. Quantitative Clinical Nuclear Cardiology, Part 1: Established Applications. Journal of Nuclear Medicine. 2019;60(11):1507–1516. doi: 10.2967/jnumed.119.229799
  23. Ansheles AA. Specific features of interpretation of myocardial perfusion single-photon emission computed tomography with computed tomographic absorption correction. Journal of Radiology and Nuclear Medicine (Vestnik rentgenologii i radiologii). 2014;(2):5–20. (In Russ). doi: 10.20862/0042-4676-2014-0-2-5-20

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Three-dimensional mathematical model of the torso, simulating the anatomical structure of the average male patient in a position with arms raised up: a - front view; b — rear view. The model is specified in a discrete representation of 128×128×128.

Жүктеу (111KB)
3. Fig. 2. Clinical data. Relative values (pulse/voxel) of accumulation of the radiopharmaceutical 99mTc-MIBI in the patient’s chest organs. The images were obtained during examination of the patient using single-photon emission computed tomography combined with computed tomography using a Philips BrightView XCT installation at the Federal State Budgetary Institution “National Medical Research Center for Cardiology named after Academician E.I. Chazov" of the Ministry of Health of the Russian Federation.

Жүктеу (146KB)
4. Fig. 3. a — radiopharmaceutical accumulation map: three-dimensional distribution of relative concentration values of 99mTc-MIBI, calculated based on a mathematical model of the torso. The map is specified in a discrete representation of 128×128×100; b - attenuation map generated based on the mathematical model of the torso. The map is specified in a discrete representation of 128×128×100. A central longitudinal section is shown.

Жүктеу (39KB)
5. Fig. 4. Comparison of projections obtained in a clinical setting when examining a patient (top) and calculated by the Monte Carlo method (bottom) using a three-dimensional activity map of a virtual patient: a - left anterior oblique projection; b — frontal projection; c — right anterior oblique projection; d — left lateral projection. Clinical data were obtained during examination of a patient using single-photon emission computed tomography using a Philips BrightView XCT installation at the Federal State Budgetary Institution “National Medical Research Center for Cardiology named after Academician E.I. Chazov" of the Ministry of Health of the Russian Federation.

Жүктеу (184KB)
6. Fig. 5. Distribution of the radiopharmaceutical 99mTc-MIBI in the chest organs: a - phantom; b - reconstruction; c — clinical case. A clinical case was obtained during examination of a patient using single-photon emission computed tomography at the Federal State Budgetary Institution “National Medical Research Center for Cardiology named after Academician E.I. Chazov" of the Ministry of Health of the Russian Federation.

Жүктеу (66KB)
7. Fig. 6. Graphical presentation of the results of a clinical examination of myocardial perfusion using single-photon emission computed tomography. The images were obtained using the QPS software package when examining a patient at the Federal State Budgetary Institution “National Medical Research Center for Cardiology named after Academician E.I. Chazov" of the Ministry of Health of the Russian Federation.

Жүктеу (261KB)
8. Fig. 7. The vertical long axis (VLA, left) section of the left ventricle model is divided into short axis (SAX) layers, and the accumulated activity values in each section are projected onto the polar diagram in concentric rings so that the basal part of the left ventricle corresponds to the outer ring, and the apical part — internal (arrows show where each layer is projected onto the polar map).

Жүктеу (71KB)
9. Fig. 8. Reference polar map of left ventricular myocardial perfusion of a virtual patient with healthy myocardium (normal). SRS (Summed Rest Score) values:

Жүктеу (83KB)
10. Fig. 9. AC/RR. Polar map of reconstructed left ventricular myocardial perfusion image. The reconstruction was carried out with attenuation correction (AC) and resolution recovery (RR). Values of the Summed Rest Score (SRS) indicator for three methods for calculating the polar map: a - Smax=10; b — S90=1; c — Snorm=3.

Жүктеу (239KB)
11. Fig. 10. non-AC/RR. Polar map of the reconstructed left ventricle. The reconstruction was performed without attenuation correction (non-AC), but with resolution restoration (RR). Values of the Summed Rest Score (SRS): a — Smax=17; b - S90=9; c — Snorm=4.

Жүктеу (235KB)
12. Fig. 11. AC/non-RR. Polar map of reconstructed left ventricular myocardial perfusion image. The reconstruction was carried out with attenuation correction (AC), but without taking into account resolution restoration (non-RR). Summed Rest Score (SRS): a — Smax=9; b — S90=3; c — Snorm=4.

Жүктеу (234KB)
13. Fig. 12. Reference polar maps of left ventricular perfusion with ischemic lesions. Values of the Summed Rest Score (SRS): a — Smax=6; b — S90=5; c — Snorm=6.

Жүктеу (200KB)
14. Fig. 13. AC/RR. Polar maps of reconstructed left ventricular myocardial perfusion images. The reconstruction was carried out with absorption correction (AC) and taking into account resolution restoration (RR). Summed Rest Score (SRS) scores: a — Smax=12; b - S90=6; c — Snorm=6.

Жүктеу (234KB)
15. Fig. 14. non-AC/RR. Polar map of reconstructed left ventricular perfusion image. The reconstruction was carried out without attenuation correction (non-AC), but taking into account resolution restoration (RR). Summed Rest Score (SRS) scores: a — Smax=23; b - S90=7; c — Snorm=2.

Жүктеу (234KB)
16. Fig. 15. AC/non-RR. Polar map of the reconstructed left ventricle. The reconstruction was carried out with attenuation correction, but without taking into account the resolution restoration. Summed Rest Score (SRS) scores: a — Smax=21; b - S90=10; c — Snorm=6.

Жүктеу (231KB)

© Eco-Vector, 2023

Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».