Сетевое моделирование структуры занятости кадров кабинетов компьютерной томографии в период пандемии COVID-19 на примере некоторых медицинских организаций Департамента здравоохранения города Москвы

Обложка

Цитировать

Полный текст

Аннотация

ОБОСНОВАНИЕ. Анализ и моделирование сетей — это технология в анализе биомедицинских данных, которая служит для описания и исследования различных статических и динамических процессов в медицине и организации здравоохранения [1]. В области общественного здоровья сетевой анализ находит широкое применение: от изучения распространения инфекционных заболеваний [2] и трансфера медицинских технологий [3] до анализа межорганизационных структур в системе здравоохранения городов, регионов и стран [4].

ЦЕЛЬ оценить адаптивность и эффективность системы управления врачебными кадрами в период пандемии COVID-19 посредством сравнительного анализа структуры занятости врачей-рентгенологов и рентгенолаборантов из выборки медицинских организаций в различные периоды пандемии в г. Москве.

МЕТОДЫ. Исходными материалами послужили данные о штатной численности, занимаемых ставках, типе должностного исполнения врачей-рентгенологов, которые входили в штат Московского референс-центра (МРЦ) по лучевой диагностике в период с января по сентябрь 2020 г. (19 медицинских организаций — МО). В представленной работе использованы методы статистического анализа; вычисления проводились с использованием языка программирования R в среде RStudio [5].

РЕЗУЛЬТАТЫ. В данной работе предложены сетевые модели на основе теории графов, в рамках которой вершинами графов являются медицинские организации и сотрудники этих медицинских организаций, а связями между вершинами установлен тип исполнения сотрудником своей трудовой функции. Так, например, модель кадровой структуры исследуемых организаций в июне 2020 г. представляет из себя граф (сеть) с 19 красными квадратами, которыми показаны МО, соединенными с множеством синих и зеленых кружков, которыми показаны врачи и рентгенолаборанты соответственно, при этом линии (рёбра), их соединяющие — это любой вид исполнения трудовой функции (основная занятость, внешнее совместительство, внутренне совместительство). Данная модель характеризуется следующими средними интегральными характеристиками: размер сети — 652; число связей — 640; плотность сети — 0,003; количество компонент — 19; центральность сети для МО и персонала — 0,084; диаметр сети — 8; связность — 0,053; средняя дистанция — 3,746 и модулярность — 0,928. Это моделирование и расчёты были выполнены в отдельности для врачей и среднего медицинского персонала по каждому типу трудовой функции. При этом плотность графа можно трактовать как степень укомплектованности штата организации, размер графа — как численность штата, а количество компонент — как меру удовлетворенности сотрудников работой в организации, при которой у них не возникает потребности в дополнительных подработках. Примерно тот же физический смысл имеет такой показатель сети, как модулярность вершин, с тем отличием, что в предложенной конфигурации модели этот показатель характеризует кадровую политику руководства организаций, направленных на создание привлекательных условий работы для персонала, при этом центральность вершины является мерой привлекательности медицинской организации для действующих и потенциальных сотрудников, а связность графа количественно демонстрирует тенденцию для рассматриваемой системы медицинских организаций миграции кадров и/или кадровую политику администрации организаций на открытие вакансий на неполные ставки. Таким образом, изучая и сравнивая структуры систем и подсистем подобных моделей, созданных путём генерации сетей по какому-либо признаку, можно выявить закономерности в изменениях кадровой структуры, вызванных каким-либо внешним по отношению к системе событием (например, эпидемиологической обстановкой в городе).

ЗАКЛЮЧЕНИЕ. В период с апреля по июнь 2020 г. нагрузка, занятость и интенсивность труда рентгенологов и рентгенолаборантов, согласно данным сетевого моделирования, была максимальной, а и в июне-августе эти показатели вернулись к значениям февраля-марта либо превзошли их в сторону улучшения, что свидетельствует об эффективности предпринятых мер в организации труда медицинских работников ДЗМ в этот период. Тенденции на увеличение нагрузки с апреля по июнь 2020 г. были наиболее выражены для среднего медперсонала, в то время как стабилизация ситуации затрагивает средний персонал с большей инертностью и не так сильно выражена, как для врачей.

Об авторах

А. В. Омельченко

Научно-практический клинический центр диагностики и телемедицины Департамента здравоохранения города Москвы

Автор, ответственный за переписку.
Email: polishchuk@npcmr.ru
Россия, Москва

И. В. Шахабов

Научно-практический клинический центр диагностики и телемедицины Департамента здравоохранения города Москвы

Email: polishchuk@npcmr.ru
Россия, Москва

Н. С. Полищук

Научно-практический клинический центр диагностики и телемедицины Департамента здравоохранения города Москвы

Email: polishchuk@npcmr.ru
Россия, Москва

Список литературы

  1. Luke D.A., Harris J.K. Network analysis in public health: history, methods, and applications // Annu Rev Public Health. 2007. Vol. 28. P. 69–93. doi: 10.1146/annurev.publhealth.28.021406.144132
  2. Patel R.R., Luke D.A., Proctor E.K., et al. Sex venue-based network analysis to identify HIV prevention dissemination targets for men who have sex with men // LGBT Health. 2018. Vol. 5, N 1. P. 78–85. doi: 10.1089/lgbt.2017.0018
  3. Prusaczyk B., Maki J., Luke D.A., Lobb R. Rural health networks: how network analysis can inform patient care and organizational collaboration in a rural breast cancer screening network // J Rural Health. 2019. Vol. 35, N 2. P. 222–228. doi: 10.1111/jrh.12302
  4. Luke D.A., Harris J.K., Shelton S., et al. Systems analysis of collaboration in 5 national tobacco control networks // Am J Public Health. 2010. Vol. 100, N 7. P. 1290–1297. doi: 10.2105/AJPH.2009.184358
  5. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2020. Available online at https://www.R-project.org/.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Омельченко А.В., Шахабов И.В., Полищук Н.С., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».