Potential use of virtual and augmented reality technologies in modern cardiology and cardiac surgery
- Авторлар: Rashidova S.S.1, Bdoyan E.A.2, Timurzieva M.M.3, Lobanovskaya S.A.3, Naumenko V.V.2, Rakhmanova A.V.2, Timofeeva V.D.4, Gutsulyak A.S.5, Zainullin A.A.5, Uzbekova K.R.5, Kharitonova V.A.5, Akhmetova N.F.5
-
Мекемелер:
- Khasavyurt Perinatal Center
- Rostov State Medical University
- Pirogov Russian National Research Medical University
- Academician I.P. Pavlov First St. Petersburg State Medical University
- Bashkir State Medical University
- Шығарылым: Том 5, № 4 (2024)
- Беттер: 819-832
- Бөлім: Reviews
- URL: https://bakhtiniada.ru/DD/article/view/309840
- DOI: https://doi.org/10.17816/DD635577
- ID: 309840
Дәйексөз келтіру
Аннотация
Innovative technologies have dramatically changed medical practice, particularly in cardiac surgery, which requires precision and caution due to the challenging nature of procedures. The use of virtual reality (VR) and augmented reality (AR) in this area has great potential to improve surgical planning, medical education and patient outcomes.
This review analyzes the literature on the role of VR and AR in modern cardiology and discusses possible directions for their development.
The search retrieved 3,858 publications from PubMed/MEDLINE, 69 publications from eLibrary, and 1,115 publications from Google Scholar. Searches included the following keywords and combinations thereof: virtual reality; augmented reality; cardiology; cardiac surgery. Publications were searched from the time the relevant databases were created to May 2024.
Cardiac care today involves increasingly sophisticated procedures that require a high level of expertise. VR becomes a powerful tool for both surgical planning and education. It opens new opportunities for educating and training cardiologists. It can be used to create realistic simulations of situations healthcare professionals may encounter in their practice. Students are able to gain hands on experience with no risk to real patients. Integrating virtual reality into cardiology practice has great potential, but several issues need to be addressed. Standards for safety and efficacy of the medical use of virtual reality should be developed. Further research is also needed to assess the long term health effects of VR use on patients.
Негізгі сөздер
Толық мәтін
##article.viewOnOriginalSite##Авторлар туралы
Seda Rashidova
Khasavyurt Perinatal Center
Хат алмасуға жауапты Автор.
Email: rrstr1990@mail.ru
ORCID iD: 0009-0002-9090-0688
SPIN-код: 5824-7314
MD
Ресей, KhasavyurtEmma Bdoyan
Rostov State Medical University
Email: emma.bdoyan@mail.ru
ORCID iD: 0009-0002-4343-1049
Ресей, Rostov-on-Don
Madina Timurzieva
Pirogov Russian National Research Medical University
Email: timurziyeva.madina@bk.ru
ORCID iD: 0009-0002-6048-7108
Ресей, Moscow
Sofya Lobanovskaya
Pirogov Russian National Research Medical University
Email: sonyalobanovsk11@yandex.ru
ORCID iD: 0009-0009-7486-0672
Ресей, Moscow
Valeria Naumenko
Rostov State Medical University
Email: valerianaumenko555@gmail.com
ORCID iD: 0009-0000-3836-9231
Ресей, Rostov-on-Don
Angelina Rakhmanova
Rostov State Medical University
Email: alyarakhmanova@mail.ru
ORCID iD: 0009-0002-2209-8988
Ресей, Rostov-on-Don
Valeriya Timofeeva
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: timofeeva-valera@mail.ru
ORCID iD: 0009-0000-0040-6447
Ресей, Saint Petersburg
Alexey Gutsulyak
Bashkir State Medical University
Email: alex.guculyak@gmail.com
ORCID iD: 0009-0002-3242-9859
MD
Ресей, UfaArtem Zainullin
Bashkir State Medical University
Email: artem.z011@mail.ru
ORCID iD: 0000-0003-1581-7120
Ресей, Ufa
Karina Uzbekova
Bashkir State Medical University
Email: uzkarina@mail.ru
ORCID iD: 0009-0009-7099-2635
SPIN-код: 7263-6262
Ресей, Ufa
Valeriya Kharitonova
Bashkir State Medical University
Email: valeriya0901@bk.ru
ORCID iD: 0009-0009-0978-2997
Ресей, Ufa
Narina Akhmetova
Bashkir State Medical University
Email: junehiltoncamp@gmail.com
ORCID iD: 0000-0003-0073-4672
SPIN-код: 7830-7828
Ресей, Ufa
Әдебиет тізімі
- Nikolaev VA, Nikolaev AA. Virtual, augmented and mixed reality technologies in the context of digitalization of healthcare system. Medical Technologies. Assessment and Choice. 2020;(2):35–42. EDN: AWZZTL doi: 10.17116/medtech20204002135
- Jiang Z, Guo Y, Wang Z. Digital twin to improve the virtual real integration of industrial IoT. J Ind Inf Integr. 2021;22(11):100196. doi: 10.1016/j.jii.2020.100196
- Nikitin AI, Abramov MK. The use of VR in medicine. In: Aktual’nye problemy aviacii i kosmonavtiki. Sbornik materialov V Mezhdunarodnoj nauchno prakticheskoj konferencii, posvyashchennoj Dnyu kosmonavtiki. 2019;2:193–194. (In Russ.) EDN: RLBTYQ
- Haleem A, Javaid M. Industry 5.0 and its applications in orthopaedics. J Clin Orthop Trauma. 2019;10(4):807–808. doi: 10.1016/j.jcot.2018.12.010
- Cho KH, Hong MR, Song WK. Upper Limb Robot Assisted Therapy Based on Visual Error Augmentation in Virtual Reality for Motor Recovery and Kinematics after Chronic Hemiparetic Stroke: A Feasibility Study. Healthcare (Basel). 2022;10(7):1186. doi: 10.3390/healthcare10071186
- Namiot ED. Augmented reality in medicine. International Journal of Open Information Technologies. 2019;7(11):94–99. EDN: ULRJCX
- Sutherland J, Belec J, Sheikh A, et al. Applying Modern Virtual and Augmented Reality Technologies to Medical Images and Models. J Digit Imaging. 2019;32(1):38–53. doi: 10.1007/s10278-018-0122-7
- Taghian A, Abo Zahhad M, Sayed MS, Abd El Malek AH. Virtual and augmented reality in biomedical engineering. Biomed Eng Online. 2023;22(1):76. doi: 10.1186/s12938-023-01138-3
- Buytaert JA, Dirckx JJ. Design and quantitative resolution measurements of an optical virtual sectioning three dimensional imaging technique for biomedical specimens, featuring two micrometer slicing resolution. J Biomed Opt. 2007;12(1):014039. doi: 10.1117/1.2671712
- Silva JNA, Southworth M, Raptis C, Silva J. Emerging Applications of Virtual Reality in Cardiovascular Medicine. JACC Basic Transl Sci. 2018;3(3):420–430. doi: 10.1016/j.jacbts.2017.11.009
- Rymuza B, Grodecki K, Kamiński J, et al. Holographic imaging during transcatheter aortic valve implantation procedure in bicuspid aortic valve stenosis. Kardiol Pol. 2017;75(10):1056. doi: 10.5603/KP.2017.0195
- Aslani N, Behmanesh A, Garavand A, et al. The Virtual Reality Technology Effects and Features in Cardiology Interventions Training: A Scoping Review. Med J Islam Repub Iran. 2022;36:77. doi: 10.47176/mjiri.36.77
- Southworth MK, Silva JR, Silva JNA. Use of extended realities in cardiology. Trends Cardiovasc Med. 2020;30(3):143–148. doi: 10.1016/j.tcm.2019.04.005
- Culbertson C, Nicolas S, Zaharovits I, et al. Methamphetamine craving induced in an online virtual reality environment. Pharmacol Biochem Behav. 2010;96(4):454–460. doi: 10.1016/j.pbb.2010.07.005
- Arslan F, Gerckens U. Virtual support for remote proctoring in TAVR during COVID-19. Catheter Cardiovasc Interv. 2021;98(5):E733–E736. doi: 10.1002/ccd.29504
- Liu J, Al’Aref SJ, Singh G, et al. An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PLoS One. 2019;14(7):e0219174. doi: 10.1371/journal.pone.0219174
- de Jesus Catalã CA, Pan R, Rossetto Kron Rodrigues M, de Oliveira Freitas N. Virtual Reality Therapy to Control Burn Pain: Systematic Review of Randomized Controlled Trials. J Burn Care Res. 2022;43(4):880–888. doi: 10.1093/jbcr/irab213
- Salisbury JP. Using Medical Device Standards for Design and Risk Management of Immersive Virtual Reality for At Home Therapy and Remote Patient Monitoring. JMIR Biomed Eng. 2021;6(2):e26942. doi: 10.2196/26942
- Keshvari M, Yeganeh MR, Paryad E, et al. The effect of virtual reality distraction on reducing patients’ anxiety before coronary angiography: a randomized clinical trial study. Egypt Heart J. 2021;73(1):98. doi: 10.1186/s43044-021-00224-y
- Aardoom JJ, Hilt AD, Woudenberg T, et al. A Preoperative Virtual Reality App for Patients Scheduled for Cardiac Catheterization: Pre Post Questionnaire Study Examining Feasibility, Usability, and Acceptability. JMIR Cardio. 2022;6(1):e29473. doi: 10.2196/29473
- Morgan H, Nana M, Phillips D, Gallagher S. The Effect of a Virtual Reality Immersive Experience Upon Anxiety Levels, Procedural Understanding, and Satisfaction in Patients Undergoing Cardiac Catheterization: The Virtual Cath Trial. J Invasive Cardiol. 2021;33(9):E681–E686. doi: 10.25270/jic/20.00664
- Gökçe E, Arslan S. Effects of virtual reality and acupressure interventions on pain, anxiety, vital signs and comfort in catheter extraction processes for patients undergoing coronary angiography: A randomized controlled trial. Int J Nurs Pract. 2023;29(6):e13176. doi: 10.1111/ijn.13176
- Bruno RR, Lin Y, Wolff G, et al. Virtual reality assisted conscious sedation during transcatheter aortic valve implantation: a randomised pilot study. EuroIntervention. 2020;16(12):e1014–e1020. doi: 10.4244/EIJ-D-20-00269
- Hermans ANL, Betz K, Verhaert DVM, et al. 360° Virtual reality to improve patient education and reduce anxiety towards atrial fibrillation ablation. Europace. 2023;25(3):855–862. doi: 10.1093/europace/euac246
- Chang SL, Kuo MJ, Lin YJ, et al. Virtual reality informative aids increase residents’ atrial fibrillation ablation procedures related knowledge and patients’ satisfaction. J Chin Med Assoc. 2021;84(1):25–32. doi: 10.1097/JCMA.0000000000000464
- Chang SL, Kuo MJ, Lin YJ, et al. Virtual reality based preprocedural education increases preparedness and satisfaction of patients about the catheter ablation of atrial fibrillation. J Chin Med Assoc. 2021;84(7):690–697. doi: 10.1097/JCMA.0000000000000555
- Brewer MB, Lau DL, Chu EA, et al. Virtual reality can reduce anxiety during office based great saphenous vein radiofrequency ablation. J Vasc Surg Venous Lymphat Disord. 2021;9(5):1222–1225. doi: 10.1016/j.jvsv.2020.12.081
- Goo HW, Park SJ, Yoo SJ. Advanced Medical Use of Three Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three Dimensional Printing. Korean J Radiol. 2020;21(2):133–145. doi: 10.3348/kjr.2019.0625
- Stepanenko A, Perez LM, Ferre JC, et al. 3D Virtual modelling, 3D printing and extended reality for planning of implant procedure of short term and long term mechanical circulatory support devices and heart transplantation. Front Cardiovasc Med. 2023;10:1191705. doi: 10.3389/fcvm.2023.1191705
- Davies RR, Hussain T, Tandon A. Using virtual reality simulated implantation for fit testing pediatric patients for adult ventricular assist devices. JTCVS Tech. 2020;6:134–137. doi: 10.1016/j.xjtc.2020.10.017
- Ramaswamy RK, Marimuthu SK, Ramarathnam KK, et al. Virtual reality guided left ventricular assist device implantation in pediatric patient: Valuable presurgical tool. Ann Pediatr Cardiol. 2021;14(3):388–392. doi: 10.4103/apc.apc_81_21
- Tautz L, Walczak L, Georgii J, et al. Combining position based dynamics and gradient vector flow for 4D mitral valve segmentation in TEE sequences. Int J Comput Assist Radiol Surg. 2020;15(1):119–128. doi: 10.1007/s11548-019-02071-4
- Bruckheimer E, Rotschild C. Holography for imaging in structural heart disease. EuroIntervention. 2016;12 Suppl X:81–84. doi: 10.4244/EIJV12SXA15
- Currie ME, McLeod AJ, Moore JT, et al. Augmented Reality System for Ultrasound Guidance of Transcatheter Aortic Valve Implantation. Innovations (Phila). 2016;11(1):31–39. doi: 10.1097/IMI.0000000000000235
- Butera G, Sturla F, Pluchinotta FR, et al. Holographic Augmented Reality and 3D Printing for Advanced Planning of Sinus Venosus ASD/Partial Anomalous Pulmonary Venous Return Percutaneous Management. JACC Cardiovasc Interv. 2019;12(14):1389–1391. doi: 10.1016/j.jcin.2019.03.020
- Zbroński K, Rymuza B, Scisło P, et al. Augmented reality in left atrial appendage occlusion. Kardiol Pol. 2018;76(1):212. doi: 10.5603/KP.2018.0017
- Iannotta M, d’Aiello FA, Van De Bruaene A, et al. Modern tools in congenital heart disease imaging and procedure planning: a European survey. J Cardiovasc Med (Hagerstown). 2024;25(1):76–87. doi: 10.2459/JCM.0000000000001569
- Deng S, Wheeler G, Toussaint N, et al. A Virtual Reality System for Improved Image Based Planning of Complex Cardiac Procedures. J Imaging. 2021;7(8):151. doi: 10.3390/jimaging7080151
- Raimondi F, Vida V, Godard C, et al. Fast track virtual reality for cardiac imaging in congenital heart disease. J Card Surg. 2021;36(7):2598–2602. doi: 10.1111/jocs.15508
- Kim B, Loke YH, Mass P, et al. A Novel Virtual Reality Medical Image Display System for Group Discussions of Congenital Heart Disease: Development and Usability Testing. JMIR Cardio. 2020;4(1):e20633. doi: 10.2196/20633
- Patel N, Costa A, Sanders SP, Ezon D. Stereoscopic virtual reality does not improve knowledge acquisition of congenital heart disease. Int J Cardiovasc Imaging. 2021;37(7):2283–2290. doi: 10.1007/s10554-021-02191-6
- Lau I, Gupta A, Sun Z. Clinical Value of Virtual Reality versus 3D Printing in Congenital Heart Disease. Biomolecules. 2021;11(6):884. doi: 10.3390/biom11060884
- Milano EG, Pajaziti E, Schievano S, et al. P369 Patient specific virtual reality for education in con genital heart disease. Eur Heart J Cardiovasc Imaging. 2020;21(suppl 1). doi: 10.1093/ehjci/jez319.218
- Ong CS, Krishnan A, Huang CY, et al. Role of virtual reality in congenital heart disease. Congenit Heart Dis. 2018;13(3):357–361. doi: 10.1111/chd.12587
- Sadeghi AH, Maat APWM, Taverne YJHJ, et al. Virtual reality and artificial intelligence for 3-dimensional planning of lung segmentectomies. JTCVS Tech. 2021;7:309–321. doi: 10.1016/j.xjtc.2021.03.016
- van de Woestijne PC, Bakhuis W, Sadeghi AH, et al. 3D Virtual Reality Imaging of Major Aortopulmonary Collateral Arteries: A Novel Diagnostic Modality. World J Pediatr Congenit Heart Surg. 2021;12(6):765–772. doi: 10.1177/21501351211045064
- Franson D, Dupuis A, Gulani V, et al. A System for Real Time, Online Mixed Reality Visualization of Cardiac Magnetic Resonance Images. J Imaging. 2021;7(12):274. doi: 10.3390/jimaging7120274
- Bindschadler M, Buddhe S, Ferguson MR, et al. HEARTBEAT4D: An Open source Toolbox for Turning 4D Cardiac CT into VR/AR. J Digit Imaging. 2022;35(6):1759–1767. doi: 10.1007/s10278-022-00659-y
- Aeckersberg G, Gkremoutis A, Schmitz Rixen T, Kaiser E. The relevance of low fidelity virtual reality simulators compared with other learning methods in basic endovascular skills training. J Vasc Surg. 2019;69(1):227–235. doi: 10.1016/j.jvs.2018.10.047
- Andersen NL, Jensen RO, Posth S, et al. Teaching ultrasound guided peripheral venous catheter placement through immersive virtual reality: An explorative pilot study. Medicine (Baltimore). 2021;100(27):e26394. doi: 10.1097/MD.0000000000026394
- Arshad I, De Mello P, Ender M, et al. Reducing Cybersickness in 360 Degree Virtual Reality. Multisens Res. 2021:1–17. doi: 10.1163/22134808-bja10066
- Jung C, Wolff G, Wernly B, et al. Virtual and Augmented Reality in Cardiovascular Care: State of the Art and Future Perspectives. JACC Cardiovasc Imaging. 2022;15(3):519–532. doi: 10.1016/j.jcmg.2021.08.017
- Mahtab EAF, Egorova AD. Current and future applications of virtual reality technology for cardiac interventions. Nat Rev Cardiol. 2022;19(12):779–780. doi: 10.1038/s41569-022-00789-4
- Pezel T, Coisne A, Bonnet G, et al. Simulation-based training in cardiology: State of the art review from the French Commission of Simulation Teaching (Commission d’enseignement par simulation-COMSI) of the French Society of Cardiology. Arch Cardiovasc Dis. 2021;114(1):73–84. doi: 10.1016/j.acvd.2020.10.004
- Spiegel B, Fuller G, Lopez M, et al. Virtual reality for management of pain in hospitalized patients: A randomized comparative effectiveness trial. PLoS One. 2019;14(8):e0219115. doi: 10.1371/journal.pone.0219115
Қосымша файлдар
