Generalized Bochner Technique and Its’ Application to the Study of Projective and Conformal Mappings
- Authors: Stepanov S.E.1,2, Mikeš J.3, Tsyganok I.I.1
-
Affiliations:
- Финансовый университет при Правительстве Российской Федерации
- Всероссийский институт научной и технической информации РАН
- Университет им. Ф. Палацкого
- Issue: Vol 223 (2023)
- Pages: 112-122
- Section: Статьи
- URL: https://bakhtiniada.ru/2782-4438/article/view/270836
- DOI: https://doi.org/10.36535/0233-6723-2023-223-112-122
- ID: 270836
Cite item
Full Text
Abstract
In this paper, we consider the generalized Bochner technique, which is a natural development of the classical Bochner technique. As an illustration, we prove some vanishing theorems on Ricci solitons, conformal and projective mappings of complete Riemannian manifolds.
About the authors
S. E. Stepanov
Финансовый университет при Правительстве Российской Федерации; Всероссийский институт научной и технической информации РАН
Author for correspondence.
Email: stepanov@fi.ru
Russian Federation, Москва; Москва
Josef Mikeš
Университет им. Ф. Палацкого
Email: josef.mikes@upol.cz
Czech Republic, Оломоуц
I. I. Tsyganok
Финансовый университет при Правительстве Российской Федерации
Email: tsy@fi.ru
Russian Federation, Москва
References
- Бессе А. Л. Многообразия Эйнштейна. В 2 тт. — М.: Мир, 1990.
- Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии. В 2 тт. — М.: Наука, 1981.
- Степанов С. Е., Цыганок И. И. Инфинитезимальные гармонические преобразования и солитоны Риччи на полных римановых многообразиях // Изв. вузов. Мат. — 2010. — № 3. — С. 97–101.
- Степанов С. Е., Цыганок И. И. Полная минимальная гиперповерхность в пространстве де Ситтера первого рода // Диффер. геом. многообр. фигур. — 2018. — 49. — С. 153–156.
- Степанов С. Е., Шелепова В. Н. Заметка о солитонах Риччи // Мат. заметки. — 2009. — 86, № 3. — С. 474–477.
- Яно К., Бохнер С. Кривизна и числа Бетти. — ИЛ, 1957.
- Adams S. R. Superharmonic functions on foliations // Trans. Am. Math. Soc. — 1992. — 330, № 2. — P. 625–635.
- Aleksandrova I. A., Mikeˇs J., Stepanov S. E., Tsyganok I. I. Liouville type theorems in the theory of mappings of complete Riemannian manifolds // J. Math. Sci. — 2017. — 221, № 6. — P. 737–744.
- Almira J. M., Romero A. A new proof of a classical result on the topology of orientable connected and compact surfaces by means of the Bochner technique // Rend. Semin. Mat. Univ. Politec. Torino. — 2019. — 77, № 1. — P. 131–136.
- Berard P. H. From vanishing theorems to estimating theorems: the Bochner technique revisited // Bull. Am. Math. Soc. — 1988. — 19, № 2. — P. 371–406.
- Bishop R. L., O’Neil B. Manifolds of negative curvature // Trans. Am. Math. Soc. — 1969. — 145. — P. 1–9.
- Caminha A. The geometry of closed conformal vector fields on Riemannian spaces // Bull. Braz. Math. Soc. — 2011. — 42, № 2. — P. 277–300.
- Caminha A., Souza P., Camargo F. Complete foliations of space forms by hypersufaces // Bull. Braz. Math. Soc. — 2010. — 41, № 3. — P. 339–353.
- Cheeger J., Gromoll D. On the structure of complete manifolds of nonnegative curvature // Ann. Math. — 1972. — 96. — P. 413–443.
- Chen X., Shen Z. A comparison theorem on the Ricci curvature in projective geometry // Ann. Glob. Anal. Geom. — 2003. — 23. — P. 141–155.
- Chow C., Lu P., Ni L. Hamilton’s Ricci Flow. — Beijing–New York: Am. Math. Soc., 2006.
- Gaffney M. P. A special Stokes’s theorem for complete Riemannian manifolds // Ann. Math. 2 Ser. — 1954. — 60, № 1. — P. 140–145.
- Gallot S., Meyer D. Operateur de courbure et laplacien des formes différentielles d’une varieté riemannianne // J. Math. Pures. Appl. — 1975. — 54. — P. 259–284.
- Greene R. E., Wu H. On the subharmonicity and plurisubharmonicity of geodesically convex functions // Indiana Univ. Math. J. — 1972/73. — 22. — P. 641–653.
- Greene R. E., Wu H. C∞ convex functions and manifolds of positive curvature // Acta Math. — 1976. — 137, № 3-4. — P. 209–245.
- Greene R. E., Shiohama K. Convex functions on complete noncompact manifolds: topological structure // Invent. Math. — 1981. — 63, № 1. — P. 129–157.
- Greene R. E., Shiohama K. Convex functions on complete noncompact manifolds: differentiable structure // Ann. Sci. Ec. Norm. Super. — 1982. — 14, № 4. — P. 357–367.
- Grigor’yan A. Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds // Bull. Am. Math. Soc. — 1999. — 36, № 2. — P. 135–249.
- Grigor’yan A. Heat Kernel and Analysis on Manifolds. — Boston: Am. Math. Soc., 2009.
- Gromoll D., Meyer W. On complete open manifolds of positive curvature // Ann. Math. — 1969. — 90. — P. 75–90.
- Jost J. Riemannian Geometry and Geometric Analysis. — Springer, 2005.
- Karp L. On Stokes’ theorem for noncompact manifolds // Proc. Am. Math. Soc. — 1981. — 82, № 3. — P. 487–490.
- Kim S. Volume and projective equivalence between Riemannian manifolds // Ann. Glob. Anal. Geom. — 2005. — 27. — P. 47–52.
- Li P., Schoen R. Lp and mean value properties of subharmonic functions on Riemannian manifolds // Acta Math. — 1984. — 153, № 1. — P. 279–301.
- Mikeš J. et al. Differential Geometry of Special Mappings. — Olomouc: Palacky Univ. Press, 2019.
- Petersen P. Riemannian Geometry. — New York: Springer, 2016.
- Petersen P., Wink M. The Bochner technique and weighted curvatures // SIGMA. — 2020. — 16. — 064.
- Petersen P., Wink M. New curvature conditions for the Bochner technique // Invent. Math. — 2021. — 224, № 1. — P. 33–54.
- Pigola S., Rigoli M., Setti A. G. Maximum Principles on Riemannian Manifolds and Applications. — Providence, Rhode Island: Am. Math. Soc., 2005.
- Pigola S., Rigoli M., Setti A. G. Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique. — Berlin: Birkhäuser Verlag, 2008.
- Pucci P., Serrin J. The strong maximum principle revisited // J. Differ. Eqs. — 2004. — 196, № 1. — P. 1–66.
- Richard S., Yau S.-T. Lectures on Differential Geometry. — Boston: International Press, 2010.
- Romero A. The introduction of Bochner’s technique on Lorentzian manifolds // Nonlin. Anal. — 2001. — 47. — P. 3047–3059.
- Schoen R. Conformal deformation of a Riemannian metric to constant curvature // J. Differ. Geom. — 1984. — 20. — P. 479–495.
- Schoen R., Yau S.-T. Lectures on Harmonic Maps. — Boston: International Press, 1994.
- Stepanov S. E. Vanishing theorems in affine, Riemann and Lorentzian geometries // J. Math. Sci. — 2007. — 141, № 1. — P. 929–964.
- Stepanov S. E., Mikeš J. The generalized Landau-Raychaudhuri equation and its applications // Int. J. Geom. Meth. Mod. Phys. — 2015. — 12, № 8. — 1560026.
- Stepanov S. E., Mikeš J. Application of the Hopf maximum principale to the theory of geodesic mappings // Kraguevac J. Math. — 2021. — 45, № 5. — P. 781–786.
- Stepanov S. E., Tsyganok I. I. A remark on the mixed scalar curvature of a manifold with two orthogonal totally umbilical distributions // Adv. Geom. — 2019. — 19, № 3. — P. 291–296.
- Topping P. Lectures on the Ricci Flow. — Cambridge: Cambridge Univ. Press, 2006.
- Wu H.-H. A remark on the Bochner technique in differential geometry // Proc. Am. Math. Soc. — 1980. — 78, № 3. — P. 403–408.
- Wu H.-H. The Bochner Technique in Differential Geometry. — Harwood Academic, 1988.
- Xiao J., Qiu C., Zhong T. Bochner–Kodaira techniques on Kähler Finsler manifolds // Chin. Ann. Math. Ser. B. — 2015. — 36, № 1. — P. 125–140.
- Yano K. Integral Formulas in Riemannian Geometry. — New York: Marcel Dekker, 1970.
- Yau S.-T. Remarks on conformal transformations // J. Differ. Geom. — 1973. — 8. — P. 369–381.
- Yau S.-T. Non-existence of continuous convex functions on certain Riemannian manifolds // Math. Ann. — 1974. — 207. — P. 269–270.
- Yau S.-T. Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry // Indiana Univ. Math. J. — 1976. — 25. — P. 659–670.
- Yau S.-T. On the heat kernel of a complete Riemannian manifold // J. Math. Pures Appl. — 1978. — 57, № 2. — P. 191–201.
Supplementary files
