Деформация норм Минковского в евклидовы нормы
- Авторы: Ровенский В.Ю.1
-
Учреждения:
- Хайфский университет
- Выпуск: Том 223 (2023)
- Страницы: 107-111
- Раздел: Статьи
- URL: https://bakhtiniada.ru/2782-4438/article/view/270835
- DOI: https://doi.org/10.36535/0233-6723-2023-223-107-111
- ID: 270835
Цитировать
Полный текст
Аннотация
Изучаются деформации норм Минковского с кусочно гладкими индикатрисами, определяемыми линейно независимыми 1-формами и кусочно гладкой положительной функцией. Такая деформация евклидовой нормы обобщает классические (α, β)-нормы М. Мацумото. Показано, что любую норму Минковского можно деформировать в евклидову норму композицией таких деформаций.
Ключевые слова
Об авторах
Владимир Юзефович Ровенский
Хайфский университет
Автор, ответственный за переписку.
Email: vrovenski@univ.haifa.ac.il
Израиль, Хайфа
Список литературы
- Javaloyes M. A., S´anchez M. On the definition and examples of Finsler metrics // Ann. Sc. Norm. Super. Pisa Cl. Sci. — 2014. — 13, № 3. — P. 813–858.
- Matsumoto M. Theory of Finsler spaces with (α, β)-metric // Repts. Math. Phys. — 1992. — 31, № 1. — P. 43–83.
- Rajabi T., Sadeghzadeh N. A new class of Finsler metrics // Mat. Vesnik. — 2021. — 73, № 1. — P. 1–13.
- Rovenski V. The new Minkowski norm and integral formulae for a manifold with a set of one-forms // Balkan J. Geom. Appl. — 2018. — 23, № 1. — P. 75–99.
- Rovenski V., Walczak P. Deforming convex bodies in Minkowski geometry // Int. J. Math.. — 33, № 1. — 2250003.
- Shen Y.-B., Shen Z. Introduction to Modern Finsler Geometry. — World Scientific, 2016.
- Shibata C. On invariant tensors of β-changes of Finsler metrics // J. Math. Kyoto Univ. — 1984. — 24. — P. 163–188.
Дополнительные файлы
