The feasibility of hydrometallurgical methods for enhancing the processing of copper concentrates

Cover Page

Cite item

Full Text

Abstract

   This article analyses available methods for processing low-grade copper concentrates, including existing hydrometallurgical schemes of their conditioning. To this end, we review Russian and foreign publications investigating existing technologies for processing substandard copper raw materials, which are used to deepen the extraction of valuable components from raw materials. Particular attention is paid to the technologies of hydrometallurgical processing of raw materials in terms of their feasibility for conditioning low-grade copper-containing materials as a substitution for conventional processing methods. The most promising technologies in terms of their further development and industrial application were identified among autoclave (MT Gordon, Platsol, CESL, hydrothermal treatment, etc.) and atmospheric leaching (HydroCopper, Intec Copper Process, Albion, etc.) methods. A number of research gaps in the field of copper raw and copper alloy processing were revealed, including problems related to conditioning of low-grade raw materials. Copper ores contain a significant amount of zinc and copper sulphides, whose complete extraction can be achieved using modern hydrometallurgical methods thus contributing to the efficiency of raw materials processing. In this respect, the Albion process seems to be a highly promising solution, thus requiring further studies.

About the authors

A. A. Vasilieva

Saint Petersburg Mining University

Email: fml0914@mail.ru

A. Ya. Boduen

Saint Petersburg Mining University

Email: Boduen_aya@pers.spmi.ru
ORCID iD: 0000-0003-3580-4394

R. E. Vasiliev

Saint Petersburg Mining University

Email: vasilroman2308@ya.ru

References

  1. Корнеев С. И. Международный обзор рынка цветных металлов / С. И. Корнеев // Цветные металлы. – 2020. – № 11. – C. 4–7.
  2. Artykova A. V., Melamud V. S., Boduen A. Ya., Bulaev A. G. Two-stage leaching of copper-zinc concentrate containing tennantite // Earth and Environmental Science: IOP Conference Series. 2020. Vol. 548. Р. 062042. https://doi.org/10.1088/1755-1315/548/6/062042.
  3. Mudd G. M., Jowitt S. M. Growing global copper resources, reserves and production: discovery is not the only control on supply // Economic Geology. 2018. Vol. 113. Iss. 6. P. 1235–1267. https://doi.org/10.5382/econgeo.2018.4590.
  4. Flores G. A., Risopatron C., Pease J. Processing of complex materials in the copper industry: challenges and opportunities ahead // JOM. 2020. Vol. 72. 3447–3461. https://doi.org/10.1007/s11837-020-04255-9.
  5. Бодуэн А. Я. Аммиачно-автоклавная технология переработки низкокачественных концентратов флотационного обогащения медистых песчанников / А. Я. Бодуэн// Обогащение руд. – 2019. – № 2. – С. 33–38. https://doi.org/10.17580/or.2019.02.06.
  6. Бодуэн А. Я. Влияние повышения качества медных концентратов на эффективность их переработки / А. Я. Бодуэн, Б. С. Иванов, Г. В. Коновалов // Записки Горного института. – 2011. – Т. 192. – С. 46–48.
  7. Зайцев П. В. Автоклавные процессы переработки медьсодержащего сырья / П. В. Зайцев, Я. М. Шнеерсон // Цветные металлы. – 2016. – № 1. – С. 26–31. https://doi.org/10.17580/tsm.2016.01.04.
  8. Sinisalo P., Lundström M. Refining approaches in the platinum group metal processing value chain – a review // Metals. 2018. Vol. 8. Iss. 4. Р. 203. https://doi.org/10.3390/met8040203.
  9. Wieszczycka K. Wastes generated by mineral extraction industries // Physical Sciences Reviews. 2018. Vol. 3. Iss. 6. https://doi.org/10.1515/psr-2018-0026.
  10. Weidenbach M., Dunn G., Teo Yong Yong. Removal of impurities from copper sulfide mineral concentrates // ALTA 7th Nickel-Cobalt-Copper Conference (Perth, 21–28 May 2016). Perth, 2016.
  11. Lundström M., Liipo J., Karonen J., Aromaa J. Dissolution of six sulfide concentrates in the Hydrocopper environment // The Southern African Institute of Mining and Metallurgy. Base Metals Conference. 2009. Р. 127–138.. URL: http://www.saimm.co.za/Conferences/BM2009/127-138_Lundstrom.pdf (04.03.2021).
  12. Sammut D., Welham N. J. The Intec copper process: a detailed environmental analysis // Green Processing Conference (Cairns, 29–31 May 2002). Cairns, 2002. P. 115–124.
  13. Hourn M., Turner D. W. Commercialisation of Albion process // ALTA Nickel-Cobalt-Copper, Uranium & Gold Conference (Perth, June 2012). Perth, 2012.
  14. Senchenko A. Y., Aksenov A. V., Vasiliev A. A., Seredkin Y. G. Technology for processing of refractory gold-containing concentrates based on ultrafine grinding and atmospheric oxidation // 28th International Mineral Processing Congress Proceedings (Quebec, 11–15 September 2016). Quebec, 2016.
  15. Senchenko A. Y., Aksenov A. V., Vasiliev A. A., Seredkin Y. G. Аlbion process capabilities for processing of feed materials different in their composition // 29th International Mineral Processing Congress (Moscow, 24–26 September 2018). M., 2018.
  16. Senchenko A. Y., Seredkin Y. G., Aksenov A. V., Vasiliev A. A. Processing of а refractory concentraite with high gold content in sulphides and rock-forming minerals // 30th International Мineral Processing Congress (Саре Town, 18–22 October 2020). Саре Town, 2020. Р. 2439–2458.
  17. Shoppert A. A., Karimova L. M., Zakharyan D. V. Novel method for comprehensive processing of low-grade copper concentrate // Solid State Phenomena. 2018. Vol. 284. Р. 856–62. https://doi.org/10.4028/www.scientific.net/SSP.284.856.
  18. Li Dong, Guo Xueyi, Xu Zhipeng, Xu Runze, Feng Qiming. Metal values separation from residue generated in alkali fusion-leaching of copper anode slime // Hydrometallurgy. 2016. Vol. 165. Part 2. Р. 290–294. https://doi.org/10.1016/j.hydromet.2016.01.021.
  19. Vafaeian S., Ahmadian M., Rezaei B. Sulphuric acid leaching of mechanically activated copper sulphidic concentrate // Minerals Engineering. 2011. Vol. 24. Iss. 15. Р. 1713–1716. https://doi.org/10.1016/j.mineng.2011.09.010.
  20. Mohammadabad F. K., Hejazi S., Khaki J. V., Babakhani A. Mechanochemical leaching of chalcopyrite concentrate by sulfuric acid // International Journal of Minerals, Metallurgy and Materials. 2016. Vol. 23. Р. 380–388. https://doi.org/10.1007/s12613-016-1247-7.
  21. Mussapyrova L., Nadirov R., Baláţ P., Rajňák M., Bureš R., Baláţ M. Selective room-temperature leaching of copper from mechanically activated copper smelter slag // Journal of Materials Research and Technology. 2021. Vol. 12. P. 2011–2025. https://doi.org/10.1016/j.jmrt.2021.03.090.
  22. Bai Yunlong, Wang Wei, Zhao Shanrong, Iu Diankun, Xie Feng, Dreisinger D. Effect of mechanical activation on leaching behavior and mechanism of chalcopyrite // Mineral Processing and Extractive Metallurgy Review. 2021. Vol. 43. Iss. 4. Р. 440–452. https://doi.org/10.1080/08827508.2021.1906239.
  23. Anderson C. G., Fayram T., Twidwell L. NSC Hydrometallurgical pressure oxidation of combined copper and molybdenum concentrates // Journal of Powder Metallurgy and Mining. 2013. Vol. 2. Iss. 3. https://doi.org/10.4172/2168-9806.1000115.
  24. Sokić M., Marković B., Stanković S., Kamberović Ţ., Štrbac N., Manojlović V., et al. Kinetics of chalcopyrite leaching by hydrogen peroxide in sulfuric acid // Metals. 2019. Vol. 9. Iss. 11. Р. 1173. https://doi.org/10.3390/met9111173.
  25. Olubambi P. A., Potgieter J. H. Investigations on the mechanisms of sulfuric acid leaching of chalcopyrite in the presence of hydrogen peroxide // Mineral Processing and Extractive Metallurgy Review. 2009. Vol. 30. 327–345. https://doi.org/10.1080/08827500902958191.
  26. Havlik T., Skrobian M. Acid leaching of chalcopyrite in the presence of ozone // Canadian Metallurgical Quarterly. 1990. Vol. 29. Iss. 2. Р. 133–139. https://doi.org/10.1179/cmq.1990.29.2.133.
  27. Wang Jingxiu, Faraji F., Ghahreman A. Evaluation of ozone as an efficient and sustainable reagent for chalcopyrite leaching: process optimization and oxidative mechanism // Journal of Industrial and Engineering Chemistry. 2021. Vol. 104. Р. 333–344. https://doi.org/10.1016/j.jiec.2021.08.036.
  28. Dutrizac J. E. The dissolution of chalcopyrite in ferric sulfate and ferric chloride media // Metallurgical Transactions B. 1981. Vol. 12. Р. 371–378. https://doi.org/10.1007/BF02654471.
  29. Anderson C. G. Industrial NSC hydrometallurgical precious metals recycle // SOJ Materials Science & Engineering. 2013. Vol. 1 Iss. 1. https://doi.org/10.15226/sojmse.2013.00105.
  30. Neira A., Pizarro D., Quezada V., Velásquez-Yévenes L. Pretreatment of copper sulphide ores prior to heap leaching: a review // Metals. 2021. Vol. 11. Iss. 7. Р. 1067. https://doi.org/10.3390/met11071067.
  31. Sokić M., Stojanović J., Marković B., Bugarčić M., Štrbac N., Kamberović Z., et al. Effects of structural and textural grain characteristics on leaching of sulphide minerals from a polymetallic concentrate by sodium nitrate and sulphuric acid solution // Hemijska Industrija. 2017. Vol. 71. Iss. 6. Р. 461–469. https://doi.org/10.2298/HEMIND161130006S.
  32. Gericke M., Neale J. W., Van Staden P. A Mintek perspective of the past 25 years in minerals bioleaching // Journal South African Institute of Mining and Metallurgy. 2009. Vol. 109. Iss. 10. Р. 567–585.
  33. Van Staden P. J. The Mintek/Bactech copper bioleach process // ALTA Copper Sulphides Symposium (Brisbane, 19–21 October 1998). Brisbane, 1998.
  34. Ягудин Р. А. Технологические решения при переработке медноколчеданных руд / Р. А. Ягудин, Ю. Р. Ягудина, Е. А. Емельяненко // Горный журнал. – 2014. – № 7. – C. 30–33.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).