The influence of hollow iron oxide microspheres on polyethylene climate aging
- 作者: Metlenkin D.A.1, Kiselev N.V.1,2, Khaydarov B.B.1,2, Suvorov D.S.1,2, Boychenko E.A.1,2,3, Ovchinnikov V.A.1, Abushakhmanova Z.R.1, Kolesnikov E.A.2, Burmistrov I.N.1,2
-
隶属关系:
- Plekhanov Russian University of Economics
- National University of Science & Technology “MISIS”
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- 期: 卷 9, 编号 2 (2024)
- 页面: 100-109
- 栏目: Original papers
- URL: https://bakhtiniada.ru/2782-2192/article/view/279624
- DOI: https://doi.org/10.17277/jamt.2024.02.pp.100-109
- ID: 279624
如何引用文章
全文:
详细
Creation of biodegradable polymers is one of the most prospective trends aimed at solving problems of polymer waste accumulation and processing, and the development of effective oxo-additives for polyolefin raw materials. It is considered to be one of the most promising ways to ensure accelerated degradation of polymer waste in natural conditions. The present research work studies the effect of nanostructured iron oxide microspheres produced with ultrasonic aerosols pyrolysis on accelerated atmospheric aging of polyethylene. Two types of microspheres were used to modify polyethylene microspheres consisting of X-ray amorphous Fe2O3 (initial microspheres after synthesis) and microspheres, consisting of crystalline Fe2O3 (heat-treated). Samples of polyethylene modified with microspheres were aged by simulating cyclic climatic effects (temperature, UV, moisture). After the aging of polyethylene modified with microspheres, a higher degree of surface oxidation was discovered using the method of infrared spectroscopy. A strong surface erosion of polyethylene was observed with the addition of microspheres after aging at the same time, untreated polyethylene was preserved almost unchanged. The present study has shown that modification of polyethylene with iron oxide microspheres beyond the end of materials useful life provides its accelerated decomposition under the influence of the main components of atmospheric impact: light, temperature and humidity. At the same time, the complex of mechanical and technological properties of modified polyethylene remained at the acceptable level, which allows using the developed material for the production of packaging, agricultural and landscape films, which will decompose in natural conditions after the end of their lifetime.
作者简介
Dmitrii Metlenkin
Plekhanov Russian University of Economics
编辑信件的主要联系方式.
Email: dametl@mail.ru
ORCID iD: 0000-0002-7006-2253
Engineer
俄罗斯联邦, 36, Stremyanny Ln., Moscow, 117997Nikolay Kiselev
Plekhanov Russian University of Economics; National University of Science & Technology “MISIS”
Email: nikokisely12345@gmail.com
ORCID iD: 0000-0003-0541-7035
Leading Specialist, Engineer
俄罗斯联邦, 36, Stremyanny Ln., Moscow, 117997; 4, Leninsky Pr., Moscow, 119049Bekzod Khaydarov
Plekhanov Russian University of Economics; National University of Science & Technology “MISIS”
Email: bekzod1991@mail.ru
ORCID iD: 0000-0003-2769-7437
Cand. Sc. (Eng.), Engineer, Leading Researcher
俄罗斯联邦, 36, Stremyanny Ln., Moscow, 117997; 4, Leninsky Pr., Moscow, 119049Dmitrii Suvorov
Plekhanov Russian University of Economics; National University of Science & Technology “MISIS”
Email: suvorov8225@yandex.ru
ORCID iD: 0000-0002-0358-9987
Engineer, Laboratory Assistant
俄罗斯联邦, 36, Stremyanny Ln., Moscow, 117997; 4, Leninsky Pr., Moscow, 119049Elena Boychenko
Plekhanov Russian University of Economics; National University of Science & Technology “MISIS”; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: elena.boychenko.sar@gmail.com
ORCID iD: 0000-0001-9216-7147
Researcher, Laboratory Assistant, Engineer
俄罗斯联邦, 36, Stremyanny Ln., Moscow, 117997; 4, Leninsky Pr., Moscow, 119049; 4, Kosygin St., Moscow, 119334Vasily Ovchinnikov
Plekhanov Russian University of Economics
Email: OvchinnikovVA@rea.ru
ORCID iD: 0000-0002-1827-905X
Cand. Sc. (Chem.), Senior Researcher
俄罗斯联邦, 36, Stremyanny Ln., Moscow, 117997Zubarzhat Abushakhmanova
Plekhanov Russian University of Economics
Email: Zubarzhat.Akh@gmail.com
ORCID iD: 0000-0002-4848-357X
Junior Researcher
俄罗斯联邦, 36, Stremyanny Ln., Moscow, 117997Evgeniy Kolesnikov
National University of Science & Technology “MISIS”
Email: kolesnikov.ea@misis.ru
ORCID iD: 0000-0001-7241-6214
Engineer
俄罗斯联邦, 4, Leninsky Pr., Moscow, 119049Igor Burmistrov
Plekhanov Russian University of Economics; National University of Science & Technology “MISIS”
Email: burmistrov.in@rea.ru
ORCID iD: 0000-0003-0776-2465
D. Sc. (Eng.), Director, Leading Expert
俄罗斯联邦, 36, Stremyanny Ln., Moscow, 117997; 4, Leninsky Pr., Moscow, 119049参考
- The Economist. The Known Unknowns of Plastic Pollution. Available from: https://www.economist.com/international/2018/03/03/the-known-unknowns-of-plastic-pollution [Accessed 4 March 2024]
- Jakubowicz I. Evaluation of degradability of biodegradable polyethylene (PE). Polymer Degradation and Stability. 2003;80(1):39-43. doi: 10.1016/S0141-3910(02)00380-4
- Chiellini E, Corti A, D’Antone S, Baciu R. Oxo-biodegradable carbon backbone polymers – Oxidative degradation of polyethylene under accelerated test conditions. Polymer Degradation and Stability. 2006;91(11):2739-2747. doi: 10.1016/j.polymdegradstab.2006.03.022
- Ammala AJ, Bateman S, Dean KM, Petinakis E, et al. An overview of degradable and biodegradable polyolefins. Progress in Polymer Science. 2011;36:1015-1049. doi: 10.1016/j.progpolymsci.2010.12.002
- Arráez FJ, María Luisa Arnal, Müller AJ. Thermal degradation of high-impact polystyrene with pro-oxidant additives. Polymer Bulletin. 2018;76(3):1489-1515. doi: 10.1007/s00289-018-2453-4
- Cowie JMG, Arrighi V. Polymers. CRC Press; 2007. 520 p.
- Contat-Rodrigo L. Thermal characterization of the oxo-degradation of polypropylene containing a pro-oxidant/pro-degradant additive. Polymer Degradation and Stability. 2013;98(11):2117-2124. doi: 10.1016/j.polymdegradstab.2013.09.011
- Al-Salem SM, Al-Hazza’a A, Karam HJ, Al-Wadi MH, et al. Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene (PE) thin films. Journal of Environmental Management. 2019;250:109475. doi: 10.1016/j.jenvman.2019.109475
- Corti A, Muniyasamy S, Vitali M, Imam SH, Chiellini E. Oxidation and biodegradation of polyethylene films containing pro-oxidant additives: Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation. Polymer Degradation and Stability. 2010;95(6):1106-1114. doi: 10.1016/j.polymdegradstab.2010.02.018
- Kyrikou I, Briassoulis D, Hiskakis M, Babou E. Analysis of photo-chemical degradation behaviour of polyethylene mulching film with pro-oxidants. Polymer Degradation and Stability. 2011;96(12):2237-2252. doi: 10.1016/j.polymdegradstab.2011.09.001
- Gusain R, Gupta K, Joshi P, Khatri OP. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Advances in Colloid and Interface Science. 2019;272:102009. doi: 10.1016/j.cis.2019.102009
- Arshady R. Microspheres for biomedical applications: preparation of reactive and labelled microspheres. Biomaterials. 1993;14(1):5-15. doi: 10.1016/0142-9612(93)90015-T
- Paulose R, Mohan R, Parihar V. Nanostructured nickel oxide and its electrochemical behavior – A brief review. Nano-Structures & Nano-Objects. 2017;11:102-111. doi: 10.1016/j.nanoso.2017.07.003
- Overcash JW, Suslick KS. High surface area iron oxide microspheres via ultrasonic spray pyrolysis of ferritin core analogues. Chemistry of Materials. 2015;27(10):3564-3567 doi: 10.1021/acs.chemmater.5b00766
- Jakubowicz I, Yarahmadi N, Arthurson V. Kinetics of abiotic and biotic degradability of lowdensity polyethylene containing prodegradant additives and its efect on the growth of microbial communities. Polymer Degradation and Stability. 2011;96(5):919-928. doi: 10.1016/j.polymdegradstab.2011.01.031
- Fontanella S, Bonhomme S, Brusson JM, Pitteri S, et al. Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co. Polymer Degradation and Stability. 2013;98(4):875-884. doi: 10.1016/j.polymdegradstab.2013.01.002
- Gulmine JV, Janissek PR, Heise HM, Akcelrud L. Polyethylene characterization by FTIR. Polymer Testing. 2002;21(5):557-563. doi: 10.1016/S0142-9418(01)00124-6
- Benítez A, Sánchez JJ, Arnal ML, Müller AJ, et al. Abiotic degradation of LDPE and LLDPE formulated with a pro-oxidant additive. Polymer Degradation and Stability. 2013;98(2):490-501. doi: 10.1016/j.polymdegradstab.2012.12.011
- Amelia RPD, Gentile S, Nirode W, Huang L. Quantitative analysis of copolymers and blends of polyvinyl acetate (PVAc) using fourier transform infrared spectroscopy (FTIR) and elemental analysis (EA). World Journal of Chemical Education. 2016;4(2):25-31. doi: 10.12691/wjce-4-2-1
- Minaeva VA, Minaev BF, Baryshnikov GV, Romeyko OM, Pittelkow M. The FTIR spectra of substituted tetraoxa[8]circulenes and their assignments based on DFT calculations. Vibrational Spectroscopy. 2013; 65:147-158. doi: 10.1016/j.vibspec.2013.01.001
- Luo M, Olivier GK, Frechette J. Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oil-water interface. Soft Matter. 2012;8(47):11923-11932. doi: 10.1039/C2SM26890F
- Pablos JL, Abrusci C, Marín I, López-Marín J, et al. Photodegradation of polyethylenes: Comparative effect of Fe and Ca-stearates as pro-oxidant additives. Polymer Degradation and Stability. 2010;95(10):2057-2064. doi: 10.1016/j.polymdegradstab.2010.07.003
- Zapata P, Palza H, Díaz B, Armijo A, et al. Effect of CaCO3 Nanoparticles on the mechanical and photo-degradation properties of LDPE. Molecules. 2018;24(1):126. doi: 10.3390/molecules24010126
- Miyazaki K, Arai T, Shibata K, Terano M, Nakatani H. Study on biodegradation mechanism of novel oxo-biodegradable polypropylenes in an aqueous medium. Polymer Degradation and Stability. 2012;97(11):2177-2184. doi: 10.1016/j.polymdegradstab.2012.08.010
- Li J, Yang R, Yu J, Liu Y. Natural photo-aging degradation of polypropylene nanocomposites. Polymer Degradation and Stability. 2008;93(1):84-89. doi: 10.1016/j.polymdegradstab.2007.10.022
- Alshammari BA, Alothman OY, Alhamidi A, Jawaid M, Shaikh HM. Effect of accelerated weathering on the thermal, tensile, and morphological characteristics of polypropylene/date nanofiller composites. Materials. 2022;15(17):6053. doi: 10.3390/ma15176053
- Ovchinnikov VA, Abushahmanova ZR, Mastalygina EE, Pantyuhov PV, et al. Kinetic features of oxidative degradation of polyethylene at addition of stearates of various transition metals. Vse Materialy. Entsiklopedicheskiy Spravochnik = Polymer Science, Series D. 2024;1:31-36. doi: 10.31044/1994-6260-2024-0-1-31-36 (In Russ.)
- Antunes A, Popelka A, Aljarod O, Hassan MK, Kasak P, Luyt AS. Accelerated weathering effects on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PHBV/TiO2. Nanocomposites. Polymers. 2020; 12(8):1743. doi: 10.3390/polym12081743
补充文件
