Security of Search and Verification Protocol in Multidimensional Blockchain

封面

如何引用文章

全文:

详细

The issue of secure data exchange and performing external transactions between robust distributed ledgers has recently been among the most significant in the sphere of designing and implementing decentralized technologies. Several approaches have been proposed to speed up the process of verifying transactions on adjacent blockchains. The problem of search has not been under research yet. The paper contains security evaluation of data exchange between independent robust distributed ledgers inside multidimensional blockchain. Main principles, basic steps of the protocol and major requirements for it are observed: centralized approach, subset principle and robust SVP. An equivalence of centralized approach and ideal search and verification functionality is proven. The probability of successful verification in case of using fully connected network graph or equivalent approach with fully connected graph between parent and child blockchain is shown. The insecurity of approach with one-to-one links between child and parent ledgers or with a subset principle is proven. A robust search and verification protocol for blocks and transactions based on the features of robust distributed ledgers is presented. The probability of attack on this protocol is mostly defined by the probability of attack on verification and not on search. An approach to protection against an attacker with 50% of nodes in the network is given. It is based on combination of various search and verification techniques.

作者简介

I. Shilov

ITMO University

Email: ilia.shilov@yandex.ru
Kronverksky pr. 49

D. Zakoldaev

ITMO University

Email: d.zakoldaev@itmo.ru
Kronverksky pr. 49

参考

  1. Шилов И.М., Заколдаев Д.А. Многомерный блокчейн и его преимущества // Информационные технологии. 2020. Т. 26. № 6. С. 360–367.
  2. Badertscher C., Maurer U., Tschudi D., Zikas V. Bitcoin as a Transaction Ledger: A Composable Treatment // Advances in Cryptology – CRYPTO 2017. 2017. pp. 324-356.
  3. Vukolic M. Rethinking permissioned blockchains // Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts. 2017. pp. 3-7.
  4. Cachin C., Guerraoui R., Rodrigues L. Introduction to Reliable and Secure Distributed Programming. // Springer-Verlag, Berlin, Heidelberg. 2011. P. 279.
  5. Pease M., Shostak R., Lamport L. Reaching agreement in the presence of faults // Journal of the ACM. 1980. vol. 27. pp. 228-234.
  6. Шилов И.М., Заколдаев Д.А. Модель устойчивого распределенного реестра для анализа безопасности многомерного блокчейна // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21. №2. С. 249-255.
  7. Garay J., Kiayias A., Leonardos N. The Bitcoin Backbone Protocol: Analysis and Applications // Advances in Cryptology - EUROCRYPT 2015. 2015. vol. 9057. pp. 281-310.
  8. Badertscher C., Gaži P., Kiayias A., Russell A., Zikas V. Ouroboros Genesis: Composable Proof-of-Stake Blockchains with Dynamic Availability // ACM Conference on Computer and Communications Security – ACM CCS 2018. 2018. pp. 913–930.
  9. David B., Gaži P., Kiayias A., Russell A. Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain // Advances in Cryptology – EUROCRYPT 2018. 2018. vol. 10821. pp. 66-98.
  10. Garay J., Kiayias A., Leonardos N. The Bitcoin Backbone Protocol with Chains of Variable Difficulty // Advances in Cryptology – CRYPTO 2017. 2017. vol. 10401. pp. 291-323.
  11. Kiayias A., Lamprou N., Stouka AP. Proofs of Proofs of Work with Sublinear Complexity // Financial Cryptography and Data Security. 2016. vol. 9604. pp. 61-78.
  12. Kiayias A., Miller A., Zindros D. Non-interactive Proofs of Proof-of-Work // Financial Cryptography and Data Security. 2020. vol. 12059. pp. 505-522.
  13. Back A., Corallo M., Dashjr L., Friedenbach M., Maxwell G., Miller A., Poelstra A., Timon J., Wuille P. Enabling Blockchain Innovations with Pegged Sidechains. URL: https://blockstream.com/sidechains.pdf (дата обращения: 29.04.2021).
  14. Gazi P., Kiayias A., Zindros D. Proof-of-Stake Sidechains // 2019 IEEEE Symposium on Security and Privacy (SP). 2019. vol. 1. pp. 677-694.
  15. Sompolinsky Y., Zohar A. Accelerating Bitcoin's Transaction Processing Fast Money Grows on Trees, Not Chains // IACR Cryptology ePrint Archive. 2013.
  16. Singh A., Click K., Parizi R.M., Zhang Q., Dehghantanha A., Choo K.K.R. Sidechain technologies in blockchain networks: An examination and state-of-the-art review // Journal of Network and Computer Applications. 2020. vol. 149.
  17. Kiayias A., Russell A., David B., Oliynykov R. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol // Advances in Cryptology – CRYPTO 2017. 2017. vol. 10401. pp. 357-388.
  18. Canetti R. Universally composable security: a new paradigm for cryptographic protocols // Proceedings 42nd IEEE Symposium on Foundations of Computer Science. 2001. pp. 136-145.
  19. Canetti R. Universally composable signatures, certification, and authentication // Proceedings of 17th Computer Security Foundations Workshop (CSFW). 2014. pp. 219-235.
  20. Canetti R., Dodis Y., Pass R., Walfish S. Universally Composable Security with Global Setup // Theory of Cryptography. 2007. vol. 4392. pp. 61-85.
  21. Canetti R., Shahaf D., Vald M. Universally Composable Authentication and Key-Exchange with Global PKI // Public-Key Cryptography – PKC 2016. 2016. vol. 9615. pp. 265-296.
  22. Bentov I., Gabizon A., Mizrahi A. Cryptocurrencies Without Proof of Work // Financial Cryptography and Data Security. 2016. vol. 9604. pp. 142-157.
  23. David B., Dowsley R., Larangeira M. ROYALE: A Framework for Universally Composable Card Games with Financial Rewards and Penalties Enforcement // Financial Cryptography and Data Security. vol. 11598. pp. 282-300.
  24. Duan S., Meling H., Peisert S., Zhang H. BChain: Byzantine Replication with Hight Throughput and Embedded Reconfiguration // Principles of Distributed Systems – OPODIS 2014. 2014. vol. 8878. pp. 91-106.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».