Neural Network Tuning of the Genetic Algorithm for Controlling a Vector Hierarchical System
- Authors: Larkin E.V1, Bogomolov A.V2, Privalov A.N3
-
Affiliations:
- Tula State University
- Federal Research Center «Computer Science and Control» of the Russian Academy of Sciences
- Tula State Lev Tolstoy Pedagogical University
- Issue: Vol 24, No 5 (2025)
- Pages: 1333-1354
- Section: Robotics, automation and control systems
- URL: https://bakhtiniada.ru/2713-3192/article/view/350759
- DOI: https://doi.org/10.15622/ia.24.5.3
- ID: 350759
Cite item
Full Text
Abstract
About the authors
E. V Larkin
Tula State University
Email: elarkin@mail.ru
Lenin Ave. 92
A. V Bogomolov
Federal Research Center «Computer Science and Control» of the Russian Academy of Sciences
Email: a.v.bogomolov@gmail.com
Vavilova St. 44/2
A. N Privalov
Tula State Lev Tolstoy Pedagogical University
Email: privaloov.61@mail.ru
Lenin Ave. 125a
References
- Lofving M., Safsten K., Winroth M. Manufacturing strategy formulation, leadership style and organizational culture in small and medium-sized enterprises // International Journal of Manufacturing Technology and Management (IJMTM). 2016. vol. 30. no. 5. pp. 306–325. doi: 10.1504/IJMTM.2016.078918.
- Landau I.D., Zito G. Digital Control Systems, Design, Identification and Implementation. Springer, 2006. 484 p.
- Astrom J., Wittenmark B. Computer Controlled Systems: Theory and Design. H.J.: Prentice Hall, 2002. 557 p.
- Kilian C.T. Modern control technology: Components and systems. Novato, CA: Delmar Thomson Learning, 2000. 608 p.
- Babishin V., Taghipour S. Optimal maintenance policy for multicomponent systems with periodic and opportunistic inspections and preventive replacements // Applied mathematical modelling. 2016. vol. 40. no. 23. pp. 10480–10505. doi: 10.1016/j.apm.2016.07.019.
- Акименко Т.А., Ларкин Е.В., Богомолов А.В., Привалов А.Н. Модель формирования образа сцены в телевизионном модуле мобильного робота, движущегося по пересеченной местности // Информационно-управляющие системы. 2024. № 5(132). С. 16–24. doi: 10.31799/8853-2024-5-16-24.
- Larkin E., Privalov A., Bogomolov A., Akimenko T. Digital control of continuous production with dry friction at actuators // Smart Innovation, Systems and Technologies. 2022. vol. 232. pp. 427–436.
- Bogomolov A.V., Larkin E.V., Privalov A.N. Mathematical models of software failures of digital control systems // Automatic Documentation and Mathematical Linguistics. 2025. vol. 59. no. 1. pp. 1–8. doi: 10.3103/S000510552470041.
- Ларкин Е.В., Богомолов А.В., Привалов А.Н., Акименко Т.А. Математическое обеспечение иерархического цифрового управления сложным технологическим объектом // Вестник ЮрГУ. Серия. Математика. Механика. Физика. 2024. Т. 16. № 4. С. 43–55.
- Harada T, Alba E. Parallel genetic algorithms: a useful survey // ACM Computing Survey. 2020. vol. 53. no. (4). pp. 1–39. doi: 10.1145/3400031.
- Hedar A., Fukushima M. Simplex coding genetic algorithm for the global optimization of nonlinear functions, in Multi-Objective Programming and Goal Programming // Advances in Soft Computing. Springer-Verlag, 2003. pp. 135–140. doi: 10.1007/978-3-540-36510-5_17.
- Helal M.H.S., Fan C.C., Liu D., Yuan S. Peer-to-peer based parallel genetic algorithm // International Conference on Information, Communication and Engineering (ICICE). Xiamen, 2017. pp. 535–538. doi: 10.1109/ICICE.2017.8478917.
- Hu C., Wang X., Mandal M.K., Meng M., Li D. Efficient face and gesture recognition techniques for robot control // Canadian Conference on Electrical and Computer Engineering. IEEE, Montreal, 2003. pp. 1757–1762. doi: 10.1109/CCECE.2003.1226250.
- Jebari K. Selection methods for genetic algorithms // International Journal of Emerging Sciences. 2013. no. 3. pp. 333–344.
- Hamann A., Racu R., Ernst R. Multi-dimensional robustness optimization in heterogeneous distributed embedded systems // Proceedings of the 13th IEEE Real Time and Embedded Technology and Applications Symposium, (RTAS’07). 2007. pp. 269–280. doi: 10.1109/RTAS.2007.19.
- Briat C. Stability and performance analysis of linear positive systems with delays using input-output methods // International Journal of Control. 2018. vol. 91. no. 7. pp. 1669–1692. doi: 10.1080/00207179.2017.1326628.
- Islam M., Chen G., Jin S. An overview of neural network // American Journal of Neural Network and Application. 2019. vol. 5. no. 1. pp. 7–11. doi: 10.11648/j.ajnna.20190501.12.
- Pavlov A.V. About the equality of the transform of Laplace to the transform of Fourier // Issues of Analysis. 2016. vol. 5. no. 4. pp. 21–30.
- Li J., Farquharson C.G., Hu X. Three effective inverse Laplace transform algorithms for computing time -domain electromagnetic responses // Geophysics. 2015. vol. 81. no. 2. doi: 10.1190/geo2015-0174.1.
- Meyer-Baese U. Digital signal processing. Springer-Verlag Berlin, Heidelbrg, 2004. 527 p.
- Yeh Y.-C., Chu Y., Chiou C.W. Improving the sampling resolution of periodic signals by using controlled sampling interval method // Computers & Electrical Engineering. 2014. vol. 40. no. 4. pp. 1064–1071. doi: 10.1016/j.compeleceng.2013.12.002.
- Ang K.N., Chong G., Li Y. PID control system analysis, design and technology // IEEE Transactions of control systems technology. 2005. vol. 13. no. 4. pp. 559–576. doi: 10.1109/TCST.2005.847331.
- O’Dwier A. PID compensation of time delay processes 1999-2002: a survey // Proceedings of the American control conference. 2003. pp. 1494–1499. doi: 10.21427/dkx2-9503.
Supplementary files


