A Comprehensive Analysis of Multi-Channel Mac and Clustering Protocols for Robust and Energy-Efficient Wireless Sensor Networks

Cover Page

Cite item

Full Text

Abstract

Wireless Sensor Networks have become indispensable in various applications, from environmental monitoring to health tracking. As they continue to evolve, security and energy efficiency remain paramount. This analysis paper compares contemporary techniques within two significant protocol categories: Multi-Channel Medium Access Control (MAC) protocols and Cluster-Based protocols. The evaluation focuses on various channel assignment strategies and clustering methods, including static and dynamic allocation of communication resources, adaptive methodologies, and hybrid approaches, alongside strategies for selecting and rotating cluster heads, and aggregating data efficiently. Through a comprehensive examination, we highlight the limitations and potential of each approach, proposing a hybrid framework that leverages the strengths of both protocol types to enhance security and energy efficiency in Wireless Sensor Networks. Our findings suggest that integrating dynamic resource allocation with energy-efficient clustering and adaptive strategies with rotational cluster head selection could lead to more robust and efficient deployments. This analysis serves as a foundational study for future research, aiming to develop advanced hybrid protocols that address the dynamic demands of WSNs, ensuring sustainable and efficient network operations.

About the authors

S. Pawale

Visvesvaraya Technological University-RRC

Email: sushmap9feb@gmail.com
QFH7+497 Jnana Sangama, VTU Main Rd. -

P. Patil

Visvesvaraya Technological University-RRC

Email: poornima_g_patil@yahoo.com
QFH7+497 Jnana Sangama, VTU Main Rd. -

References

  1. Shah S.M., Sun Z., Zaman K., Hussain A., Ullah I., Ghadi Y.Y., Khan M.A., Nasimov R. Advancements in neighboring-based energy-efficient routing protocol (NBEER) for underwater wireless sensor networks. Sensors. 2023. vol. 23(13). doi: 10.3390/s23136025.
  2. Raj V.P., Duraipandian M. Energy conservation using PISAE and cross-layer-based opportunistic routing protocol (CORP) for wireless sensor network. Engineering Science and Technology, an International Journal. 2023. vol. 42.
  3. Duy Tan N., Nguyen D.N., Hoang H.N., Le T.T.H. EEGT: Energy efficient grid-based routing protocol in wireless sensor networks for IoT applications. Computers. 2023. vol. 12(5).
  4. Abdulai J.D., Adu-Manu K.S., Katsriku F.A., Engmann F. A modified distance-based energy-aware (mDBEA) routing protocol in wireless sensor networks (WSNs). Journal of Ambient Intelligence and Humanized Computing. 2023. vol. 14(8). pp. 10195–10217.
  5. Manikandan A., Venkataramanan C., Dhanapal R. A score based link delay aware routing protocol to improve energy optimization in wireless sensor network. Journal of Engineering Research. 2023. vol. 11(4). pp. 404–413.
  6. Gururaj H.L., Natarajan R., Almujally N.A., Flammini F., Krishna S., Gupta, S.K. Collaborative energy-efficient routing protocol for sustainable communication in 5G/6G wireless sensor networks. IEEE Open Journal of the Communications Society. 2023. pp. 2050–2061.
  7. Narayan V., Daniel A.K., Chaturvedi P. E-FEERP: Enhanced fuzzy based energy efficient routing protocol for wireless sensor network. Wireless Personal Communications. 2023. vol. 131(1). pp. 371–398. doi: 10.1007/s11277-023-10434-z.
  8. Hemanand D., Senthilkumar C., Saleh O.S., Muthuraj B., Anand A., Velmurugan V. Analysis of power optimization and enhanced routing protocols for wireless sensor networks. Measurement: Sensors. 2023. vol. 25. doi: 10.1016/j.measen.2022.100610.
  9. Sharma A., Babbar H., Rani S., Sah D.K., Sehar S., Gianini G. MHSEER: a meta-heuristic secure and energy-efficient routing protocol for wireless sensor network-based industrial IoT. Energies. 2023. vol. 16(10). doi: 10.3390/en16104198.
  10. Verma C.P. Enhancing Parameters of LEACH Protocol for Efficient Routing in Wireless Sensor Networks. Journal of Computers, Mechanical and Management. 2023. vol. 2(1). pp. 30–34. doi: 10.57159/gadl.jcmm.2.1.23040.
  11. Li G., Peng S., Wang C., Niu J., Yuan Y. An energy-efficient data collection scheme using denoising autoencoder in wireless sensor networks. Tsinghua Science and Technology. 2019. vol. 24(1). pp. 86–96. doi: 10.26599/TST.2018.9010002.
  12. Panchal A., Singh R.K. EEHCHR: Energy efficient hybrid clustering and hierarchical routing for wireless sensor networks. Ad Hoc Netw. 2021. vol. 123. doi: 10.1016/j.adhoc.2021.102692.
  13. Wang J., Han H., Li H., He S., Sharma P.K., Chen L. Multiple strategies differential privacy on sparse tensor factorization for network traffic analysis in 5G, IEEE Trans. Ind. Inform. 2022. vol. 18(3). pp. 1939–1948. doi: 10.1109/TII.2021.3082576.
  14. Cao D., Zheng B., Ji B., et al. A robust distance-based relay selection for message dissemination in vehicular network, Wirel. Netw. 2018. vol. 26. pp. 1755–1771. doi: 10.1007/s11276-018-1863-4.
  15. Raja S.P., Rajkumar T.D., Raj V. Internet of things: Challenges, issues and applications, J. Circuits Syst. Comput. 2018. vol. 27. doi: 10.1142/S0218126618300076.
  16. Chandramohan K., Manikandan A., Ramalingam S., Dhanapal R. Performance evaluation of VANET using Directional Location Aided Routing (D-LAR) protocol with sleep scheduling algorithm. Ain Shams Eng. J. 2024. vol. 15(3). doi: 10.1016/j.asej.2023.102458.
  17. Premakumari S.B.N., Mohan P., Subramanian K. An enhanced localization approach for energy conservation in wireless sensor network with Q deep learning algorithm. Symmetry. 2022. vol. 14. doi: 10.3390/sym14122515.
  18. Lilhore U.K., Khalaf O.I., Simaiya S., Tavera Romero C.A., Abdulsahib G.M., Poongodi M., Kumar D. A depth-controlled and energy-efficient routing protocol for underwater wireless sensor networks. International Journal of Distributed Sensor Networks. 2022. vol. 18. no. 9. doi: 10.1177/15501329221117118.
  19. Karpagalakshmi R.C., Vijayalakshmi P., Gowsic K., Rathi R. An effective traffic management system using Connected Dominating Set Forwarding (CDSF) framework for reducing traffic congestion in high density VANETs. Wirel. Pers. Commun. 2021. vol. 119(3). pp. 2725–2754.
  20. Manikandan A., Madhu G.C., Flora G.D., et al. Hybrid advisory weight based dynamic scheduling framework to ensure effective communication using acknowledgement during encounter strategy in Ad-hoc network. Int. J. Inf. Tecnol. 2023. vol. 15. pp. 4521–4527. doi: 10.1007/s41870-023-01421-5.
  21. Elbhiri B, Saadane R, El Fkihiand S, Aboutajdine D. Developed Distributed Energy-Efficient Clustering (DDEEC) for heterogeneous wireless sensor networks. I/V Communications and Mobile Network (ISVC). 5th International Symposium on I/V Communications and Mobile Network. 2010. 1-4. doi: 10.1109/ISVC.2010.5656252.
  22. Saini P., Sharma A.K. E-DEEC – Enhanced Distributed Energy Efficient Clustering Scheme for heterogeneous WSN. 1st International Conference on Parallel, Distributed and Grid Computing. 2010. pp. 205–210. doi: 10.1109/PDGC.2010.5679898.
  23. Saini P., Sharma A.K. Energy Efficient Scheme for Clustering Protocol Prolonging the Lifetime of Heterogeneous Wireless Sensor Networks. International Journal of Computer Applications. 2010. vol. 6(2). pp. 30–36.
  24. Javaid N., Qureshi T.N., Khan A.H., Iqbal A., Akhtar E., Ishfaq M. EDDEEC: Enhanced Developed Distributed Energy-efficient Clustering for Wireless Sensor Networks. Procedia Computer Science. 2013. vol. 19. pp. 914–919.
  25. Jibreel F. Improved Developed Distributed Energy-Efficient Clustering Scheme (iDDEEC). International Journal of Innovative Science and Research Technology. 2018. vol. 3(12). pp. 564–567.
  26. Jibreel F., Daabo M.I., Yusuf-Asaju A.W., Gbolagade K.A. Servant-MODLEACH Energy Efficient Cluster Based Routing Protocol for Large Scale Wireless Sensor Network. The 12th International MultiConference on ICT Applications. 2018. vol. 12. pp. 1–6.
  27. Jibreel F. Gateway–based Threshold Distributed Energy Efficient Clustering (G-TDEEC). International Journal of Computer Applications. 2019. vol. 182(42). pp. 43–46.
  28. Smaragdakis G, Matta I, Bestavros A. SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. Proceeding of the International Workshop on Sensor and Actor Network Protocols and Applications. 2004. no. 4. pp. 660–670.
  29. Kosunalp S., Acik S. Medium Access Control Layer for Internet of Things Edge-Side Network Using Carrier-Sense Multiple Access Protocol. Engineering Proceedings. 2024. vol. 70(1).
  30. Ahmad S.S., Al‐Raweshidy H., Nilavalan R. Investigating delay of the media access control protocols for IoT‐RoF using quantum entanglement. IET Networks. 2024. vol. 13(4). pp. 324–337.
  31. Beltramelli L., Mahmood A., Osterberg P., Gidlund M. LoRa beyond ALOHA: An investigation of alternative random access protocols. IEEE Transactions on Industrial Informatics. 2020. vol. 17(5). pp. 3544–3554.
  32. Nagaraju S., Gudino L.J., Sood N., Chandran J.G., Sreejith V. Multiple token‐based neighbor discovery for directional sensor networks. ETRI Journal. 2020. vol. 42(3). pp. 351–365.
  33. Dhabliya D., Soundararajan R., Selvarasu P., Balasubramaniam M.S., Rajawat A.S., Goyal S.B., Raboaca M.S., Mihaltan T.C., Suciu G. Energy-efficient network protocols and resilient data transmission schemes for wireless sensor Networks – An experimental survey. Energies. 2022. vol. 15(23). doi: 10.3390/en15238883.
  34. Azad M.A.K., Ngo C.T., Oh H. A two-channel slotted sense multiple access protocol for timely and reliable data transmission in industrial wireless sensor networks. International Journal of Distributed Sensor Networks. 2020. vol. 16(4). doi: 10.1177/1550147720902007.
  35. Rambabu C., Prasad, V.V.K.D.V., Prasad K.S. Multipath cluster-based hybrid MAC protocol for wireless sensor networks. International Journal of Wireless and Microwave Technologies (IJWMT). 2020. vol. 10(1). pp. 1–16.
  36. Alam M.I.I., Hossain M.F., Munasinghe K., Jamalipour A. MAC protocol for underwater sensor networks using EM wave with TDMA based control channel. IEEE Access. 2020. vol. 8. pp. 168439–168455.
  37. Arafath M.S., Qamar S., Khan K.U.R., Sunitha, K.V.N. Analysis of Power in Medium Access Control Code Division Multiple Access Protocol for Data Collection in a Wireless Sensor Network. Innovations in Electronics and Communication Engineering: Proceedings of the 8th ICIECE 2019. 2020. pp. 39–50.
  38. Ouadou M., Mafamane R., Minaoui K. A Hybrid Anti-Collision Protocol Based on Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) for Radio Frequency Identification (RFID) Readers. Network. 2024. vol. 4(2). pp. 217–236.
  39. Li D., Nakazato J., Tsukada M. A State-Interactive MAC Layer TDMA Protocol Based on Smart Antennas. Electronics. 2024. vol. 13(11).
  40. Longla T.T., Shah A.S., Rabie K.M., Li X. S-LEACH-CDMA: Sectoring and CDMA Integration with LEACH for Scalability and Energy Efficiency in Wireless Sensor Networks. Authorea Preprints. 2024.
  41. Maeng J., Dahouda M.K., Joe I. Optimal power allocation with sectored cells for sum-throughput maximization in wireless-powered communication networks based on hybrid SDMA/NOMA. Electronics. 2022. vol. 11(6).
  42. Peng M., Li B., Yan Z., Yang M. A spatial group-based multi-user full-duplex OFDMA MAC protocol for the next-generation WLAN. Sensors. 2020. vol. 20(14).
  43. Ghosh S., Al-Dweik A., Alouini M.S. On the performance of end-to-end cooperative NOMA-based IoT networks with wireless energy harvesting. IEEE Internet of Things Journal. 2023. vol. 10(18). pp. 16253–16270.
  44. Esmaiel H., Sun H. Energy Harvesting for TDS-OFDM in NOMA-Based Underwater Communication Systems. Sensors. 2022. vol. 22(15). doi: 10.3390/s22155751.
  45. Pandi V.S., Prasina A., Shibu S., Sripriya T. A Novel Downlink Frequency Allocation (DFA) Technique for Enhanced Throughput in 5G and Beyond (B5G) Multi-hop Networks. Traitement du Signal. 2024. vol. 41(3). pp. 1345–1354.
  46. Yu N., Zhang L., Ren Y. BRS-based robust secure localization algorithm for wireless sensor networks. International Journal of Distributed Sensor Networks. 2013. vol. 9(3). doi: 10.1155/2013/107024.
  47. Mestres A., Abadal S., Torrellas J., Alarcon E., Cabellos-Aparicio A. A MAC protocol for reliable broadcast communications in wireless network-on-chip. Proceedings of the 9th International Workshop on Network on Chip Architectures. 2016. pp. 21–26. doi: 10.1145/2994133.2994137.
  48. Li X., Xiao F., Tang K., Luo E. Outage performance and energy efficiency optimization of wireless-powered millimeter-wave sensor networks. EURASIP Journal on Wireless Communications and Networking. 2024. vol. 2024(1). doi: 10.1186/s13638-023-02328-2.
  49. Gulyamov S., Yusupbekov A., Mirzaev D., Kuziev Z. Algorithms for composing communication protocols of wireless sensor networks with random access. E3S Web of Conferences. 2023. vol. 417.
  50. Dhabliya D., Soundararajan R., Selvarasu P., Balasubramaniam M.S., Rajawat A.S., Goyal S.B., Raboaca M.S., Mihaltan T.C., Verma C., Suciu G. Energy-efficient network protocols and resilient data transmission schemes for wireless sensor Networks – An experimental survey. Energies. 2022. vol. 15(23). doi: 10.3390/en15238883.
  51. Thahniyath G., Jayaprasad M. Secure and load balanced routing model for wireless sensor networks. Journal of King Saud University-Computer and Information Sciences. 2022. vol. 34(7). pp. 4209–4218.
  52. Ndoye E.H.M., Diallo O., Hakem N., Jacquet F., Misson M., Rodrigues J.J. Interference‐aware clustering approach improving QoS for linear WSNs using a token‐based MAC protocol. International Journal of Communication Systems. 2020. vol. 33(11).
  53. Nagaraju S., Gudino L.J., Sood N., Chandran J.G., Sreejith V. Multiple token‐based neighbor discovery for directional sensor networks. ETRI Journal. 2020. vol. 42(3). pp. 351–365.
  54. Mundada M.R., Kiran S., Khobanna S., Varsha R.N., George S.A. A study on energy efficient routing protocols in wireless sensor networks. International Journal of Distributed and Parallel Systems (IJDPS). 2012. vol. 3. pp. 311–330.
  55. Anees J., Zhang H.C., Lougou B.G., Baig S., Dessie Y.G. Delay aware energy-efficient opportunistic node selection in restricted routing. Computer Networks. 2020. vol. 181.
  56. Lee D., Attias R., Puri A., Sengupta R., Tripakis S., Varaiya P. A wireless token ring protocol for intelligent transportation systems. IEEE Intelligent Transportation Systems. Proceedings (ITSC 2001). IEEE, 2001. pp. 1152–1157.
  57. Hang Z., Bo L., Zhongjiang Y., Mao Y., Xinru L. A multi-token sector antenna neighbor discovery protocol for directional ad hoc networks. China Communications. 2024.
  58. Maurya S., Gupta V., Jain V.K. Lbrr: Load balanced ring routing protocol for heterogeneous sensor networks with sink mobility. IEEE wireless communications and networking Conference (WCNC). IEEE, 2017. pp. 1–6.
  59. Cevik T., Zaim A.H. EETBR: Energy efficient token-based routing for wireless sensor networks. Turkish Journal of Electrical Engineering and Computer Sciences. 2013. vol. 21(2). pp. 513–526.
  60. Han B., Ran F., Li J., Yan L., Shen H., Li A. A novel adaptive cluster based routing protocol for energy-harvesting wireless sensor networks. Sensors. 2022. vol. 22(4).
  61. Qureshi K.N., Bashir M.U., Lloret J., Leon A. Optimized cluster‐based dynamic energy‐aware routing protocol for wireless sensor networks in agriculture precision. Journal of sensors. 2020. vol. 2020(1).
  62. Hu H., Fan X., Wang C. Efficient cluster-based routing protocol for wireless sensor networks by using collaborative-inspired Harris Hawk optimization and fuzzy logic. Plos one. 2024. vol. 19(4).
  63. Wang H., Liu K., Wang C., Hu H. Energy-Efficient, Cluster-Based Routing Protocol for Wireless Sensor Networks Using Fuzzy Logic and Quantum Annealing Algorithm. Sensors. 2024. vol. 24(13).
  64. El Habib Kahla M., Beggas M., Laouid A., Hammoudeh M. A Nature-Inspired Partial Distance-Based Clustering Algorithm. Journal of Sensor and Actuator Networks. 2024. vol. 13(4).
  65. Sundararajan R.K., Jayaraman G., Arunkumar S., Jeyapandian M., Kaliyaperumal K., Perumal D., Dhulipala V.S. EECAS: Energy Efficient Clustering and Aggregator Node Selection for Wireless Sensor Networks. Wireless Personal Communications. 2024. vol. 136. pp. 899–919.
  66. Preetha M., Anil Kumar N., Elavarasi K., Vignesh T., Nagaraju V. A Hybrid Clustering Approach Based Q-Leach in TDMA to Optimize QOS-Parameters. Wireless Personal Communications. 2022. pp. 1–32.
  67. Akila E., Deepa B. An Comparison of Different Cluster Head Selection Techniques for Wireless Sensor Network. Communications on Applied Nonlinear Analysis. 2024. vol. 31(5s). pp. 479–486.
  68. Tay M., Senturk A. A new energy-aware cluster head selection algorithm for wireless sensor networks. Wireless Personal Communications. 2022. vol. 122(3). pp. 2235–2251.
  69. Sen S., Sahoo L., Ghosh S.L. Lifetime extension of wireless sensor networks by perceptive selection of cluster head using K-Means and Einstein weighted averaging aggregation operator under uncertainty. J. Ind Intell. 2024. vol. 2(1). pp. 54–62.
  70. Ahmad R., Wazirali R., Bsoul Q., Abu-Ain T., Abu-Ain W. Feature-selection and mutual-clustering approaches to improve DoS detection and maintain WSNs’ lifetime. Sensors. 2021. vol. 21(14).
  71. Begum B.A., Nandury S.V. Data aggregation protocols for WSN and IoT applications – A comprehensive survey. Journal of King Saud University-Computer and Information Sciences. 2023. vol. 35(2). pp. 651–681.
  72. Jan S.R.U., Khan R., Jan M.A. An energy-efficient data aggregation approach for cluster-based wireless sensor networks. Annals of telecommunications. 2021. vol. 76(5). pp. 321–329.
  73. Sharmin S., Ahmedy I., Md Noor R. An energy-efficient data aggregation clustering algorithm for wireless sensor Networks using hybrid PSO. Energies. 2023. vol. 16(5).
  74. Sreedevi P., Venkateswarlu S. An Efficient Intra‐Cluster Data Aggregation and finding the Best Sink location in WSN using EEC‐MA‐PSOGA approach. International Journal of Communication Systems. 2022. vol. 35(8).
  75. Khedr A.M., Raj P.P., Al Ali A. An Energy-Efficient Data Acquisition Technique for Hierarchical Cluster-Based Wireless Sensor Networks. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl. 2020. vol. 11(3). pp. 70–86.
  76. Jawaligi S.S. ACRDA: An adaptive combined relay based dynamic data aggregation technique for wireless sensor networks. Measurement: Sensors. 2022. vol. 24.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».