On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of even order

Cover Page

Cite item

Full Text

Abstract

In the article, we consider a boundary value problem for a nonlinear ordinary differential equation of even order which, obviously, has a trivial solution. Sufficient conditions for the existence and uniqueness of a positive solution to this problem are obtained. With the help of linear transformations of T. Y. Na [T. Y. Na, Computational Methods in Engineering Boundary Value Problems, Acad. Press, NY, 1979, ch. 7], the boundary value problem is reduced to the Cauchy problem, the initial conditions of which make it possible to uniquely determine the transformation parameter. It is shown that the transformations of T. Y. Na uniquely determine the solution of the original problem. In addition, based on the proof of the uniqueness of a positive solution to the boundary value problem, a sufficiently effective non–iterative numerical algorithm for constructing such a solution is obtained. A corresponding example is given.

About the authors

Gusen E. Abduragimov

Dagestan State University

Author for correspondence.
Email: gusen_e@mail.ru
ORCID iD: 0000-0001-7095-932X

Candidate of Physics and Mathematics, Associate Professor of the Applied Mathematics Department

Russian Federation, 33 M. Hajiyev St., Makhachkala 367025, Russian Federation

Patimat E. Abduragimova

Dagestan State University

Email: abpatuka@mail.ru
ORCID iD: 0000-0001-9050-0209

Post-Graduate Student, Applied Mathematics Department

Russian Federation, 33 M. Hajiyev St., Makhachkala 367025, Russian Federation

Madina M. Kuramagomedova

Dagestan State University

Email: madina19.12@mail.ru
ORCID iD: 0000-0001-6424-9348

Post-Graduate Student, Applied Mathematics Department

Russian Federation, 33 M. Hajiyev St., Makhachkala 367025, Russian Federation

References

  1. A. Granas, R. Guenther, J. Lee, Nonlinear Boundary Value Problems for Ordinary Differential Equations, National Scientific Publishers, Warszawa, 1985, 132 pp.
  2. A.I. Bulgakov, “Integral inclusions with nonconvex images, and their applications to boundary value problems for differential inclusions”, Russian Acad. Sci. Sb. Math., 77:1 (1994), 193-212.
  3. S. Benarab, “Two-sided estimates for solutions of boundary value problems for implicit differential equations”, Russian Universities Reports. Mathematics, 26:134 (2021), 216-220 (In Russian).
  4. A.N. Pchelintsev, A.A. Polunovskiy, I.Yu. Yukhanova, “The harmonic balance method for finding approximate periodic solutions of the Lorenz system”, Tambov University Reports. Series: Natural and Technical Sciences, 24:126 (2019), 187-203 (In Russian).
  5. He. Ying, “Existence theory for single positive solution to fourth-order value problems”, Advance in Pure Mathematics, 4 (2014), 480-486.
  6. Y. Liu, “Miltiple positive of nonlinear singular boundary value problem for fourth-order equations”, Advances Mathematics Letters, 4 (2004), 747-757.
  7. E.I. Abduragimov, “Positive solution of a two-point boundary value problem for one fourth-order ODE and a numerical method for its consruction”, Samara University Reports. Natural Science Series, 2:76 (2010), 5-12 (In Russian).
  8. E.I. Abduragimov, “Existence of a positive solution to a two-point boundary value problem for one nonlinear fourth-order ODE”, Samara University Reports. Natural Science Series, 10:121 (2014), 9-16 (In Russian).
  9. E.I. Abduragimov, T.Yu. Hajiyeva, R.K. Magomedova, “A numerical method for construction a positive solution to a two-point boundary value problem for one nonlinear fourth-order ODE”, Dagestan University Reports. Series: Natural Sciences, 6 (2015), 85-92 (In Russian).
  10. E.I. Abduragimov, P.E. Abduragimova, T.Yu. Hajiyeva, “Two - point boundary value problem for one nonlinear ODE of the 4 order. Existence, uniqueness of a positive solution and a numerical method for its consruction”, Dagestan University Reports. Series: Natural Sciences, 3 (2019), 79-85 (In Russian).
  11. T.Y. Na, Computational Methods in Engineering Boundary Value Problems, Academic Press, New York, 1979, 296 pp.
  12. E. Kamke, Handbook of Ordinary Differential Equations, Science Publ., Moscow, 1976 (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».