On application of the i-smooth analysis methodology to elaboration of numerical methods for solving functional differential equations
- Authors: Kim A.V.1
-
Affiliations:
- N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences
- Issue: Vol 26, No 133 (2021)
- Pages: 26-34
- Section: Original articles
- URL: https://bakhtiniada.ru/2686-9667/article/view/296363
- ID: 296363
Cite item
Full Text
Abstract
The article discusses a number of aspects of the application of i-smooth analysis in the development of numerical methods for solving functional differential equations (FDE). The principle of separating finite- and infinite-dimensional components in the structure of numerical schemes for FDE is demonstrated with concrete examples, as well as the usage of different types of prehistory interpolation, those by Lagrange and Hermite. A general approach to constructing Runge–Kutta-like numerical methods for nonlinear neutral differential equations is presented. Convergence conditions are obtained and the order of convergence of such methods is established.
About the authors
Arkadii V. Kim
N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: avkim@imm.uran.ru
Doctor of Physics and Mathematics, Senior Scientific Researcher
Russian Federation, 16 S. Kovalevskaya St., Yekaterinburg 620108, Russian FederationReferences
- A. V. Kim, V. G. Pimenov, Numerical Methods for Delay Differential Equations. Application of i -Smooth Analysis. V. 44, Lecture Notes Series, Research Institute of Mathematics. Global Analysis Research Center. Seoul National Univertsity, Seoul, 1999.
- А. В. Ким, В. Г. Пименов, i -Гладкий анализ и численные методы решения функционально-дифференциальных уравнений, Научно-издательский центр «Регулярная и хаотическая динамика», М.-Ижевск, 2004, 256 с. [A. V. Kim, V. G. Pimenov, i -Smooth Analysis and Numerical Methods for Solving Functional Differential Equations, Research and Publishing Center "Regular and Chaotic Dynamics", Moscow-Izhevsk, 2004 (In Russian), 256 pp.]
- A. V. Kim, i -Smooth Analysis. Theory and Applications, Wiley Publ., New Jersey, 2015.
- А. В. Ким, Прямой метод Ляпунова в теории устойчивости систем с последействием, Уральский ГУ, Екатеринбург, 1992. [A. V. Kim, The Direct Lyapunov Method in the Theory of Stability of Systems with Aftereffect, Ural State University Publ., Yekaterinburg, 1992 (In Russian)].
- А. В. Ким, i -Гладкий анализ и функционально-дифференциальные уравнения, ИММ УрО РАН, Екатеринбург, 1996, 234 с. [A. V. Kim, i -Smooth Analysis and Functional Differential Equations, IMM UB RAS, Yekaterinburg, 1996 (In Russian), 234 pp.]
- А. В. Ким, “О решении нелинейных краевых задач для обыкновенных дифференциальных уравнений”, Дифференциальные уравнения, 23:9 (1987), 1503–1510. [A. V. Kim, "The solution of nonlinear boundary value problems for ordinary differential equations", Differ. Uravn., 23:9 (1987), 1504-1510 (In Russian)].
- Guang-Da Hu, "Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays", Kybernetika, 54:4 (2018), 718-735.
- А. Bellen, M. Zennaro, Numerical Methods for Delay Differential Equations, Clarendon Press, Oxford, 2003.
- F. Ismail, R. Ali Al-Khasa, A. San Lwin, M. Suleiman, "Numerical treatment of delay differential equations by Runge-Kutta methods using hermite interpolation", Matematika, 18 (2002), 79-90.
- V. B. Kolmanovskii, V. R. Nosov, Stability of Functional Differential Equations, Academic Publ., London, 1986.
- А. А. Самарский, А. В. Гулин, Численные методы, Наука, М., 1989. [A. A. Samarskiy, A. V. Gulin, Numerical Methods, Nauka Publ., Moscow, 1989].
Supplementary files
