Свойства одного матрично-дифференциального оператора высокого порядка

Обложка

Цитировать

Полный текст

Аннотация

В статье рассматривается линейный матрично-дифференциальный оператор n-го порядка вида An . Устанавливается операторный аналог бинома Ньютона, с помощью которого для операторов An и A -1 n получено аналитическое выражение. Приводится лемма о решении линейного уравнения, которая применяется при исследовании абстрактной задачи Коши для алгебро-дифференциального уравнения в банаховом пространстве с кубом оператора A при старшей производной. Оператор A обладает свойством иметь 0 нормальным собственным числом. Методом каскадного расщепления уравнения и условий на, соответственно, уравнения и условия в подпространствах меньших размерностей определены условия существования, единственности решения, и найдено это решение. Как приложение, полученные результаты при n=3 применяются при решении смешанной задачи для уравнения в частных производных четвертого порядка. К таким уравнениям относится обобщенное волновое уравнение на мелкой воде, обобщенное уравнение Лиувилля.

Об авторах

Владимир Игоревич Усков

ФГБОУ ВО «Воронежский государственный лесотехнический университет имени Г. Ф. Морозова»

Email: vum1@yandex.ru
кандидат физико-математических наук, старший преподаватель кафедры математики 394613, Российская Федерация, г. Воронеж, ул. Тимирязева, 8

Список литературы

  1. S.P. Zubova, E.V. Raetskaya, V.I. Uskov, “Degeneracy property of a matrix-differential operator and applications”, Journal of Mathematical Sciences, 255:5 (2021), 640-652.
  2. A.D. Polyanin, V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman&Hall / CRC Press, Boca Raton-London-New York, 2004.
  3. Т.Д. Асылбеков, М.К. Чамашев, “Коэффициентная обратная задача для линейного уравнения в частных производных четвертого порядка”, Известия Томского политехнического университета, 317:2 (2010), 22-25.
  4. N.H. Ibragimov, “A new Conversation laws theorem”, Journal of Mathematical Analysis, 333:1(2007), 311-328.
  5. И.В. Рахмелевич, “О решениях многомерного дифференциального уравнения произвольного порядка со смешанной старшей частной производной и степенными нелинейностями”, Владикавсказский математический журнал, 18:4 (2016), 41-49.
  6. Я.А. Афанасова, “Мультиномиальное тождество и его приложения”, Классические и прикладные аспекты преемственной математической подготовки в ВУЗе: исторический и современный взгляд молодых ученых и соискателей высшего образования, Материалы Всеукраинской научно-практической конференции (Харьков, 2021), Тезисы докладов, 2021, 194-197.
  7. В.И. Усков, “Решение задачи для системы уравнений в частных производных третьего порядка”, Вестник российских университетов. Математика, 26:133 (2021), 68-76.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».