Химия ацетилена без переходных металлов: Тенденции и темпы развития. Обзор

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На фоне современного лавинообразного потока исследований в области химии ацетилена, использующих в качестве катализаторов переходные металлы, работы по катализу реакций ацетилена кислотами и основаниями остаются в тени, хотя кислотно-основный катализ наряду с ферментативным занимает главенствующее положение в живой природе и исторически первым вошел в человеческую практику, а затем и в науку. До сих пор большинство практически значимых реакций ацетилена (а это, в основном, реакции Фаворского – винилирование спиртов, этинилирование карбонильных соединений, прототропная изомеризация алкинов, перегруппировка α-галогенкетонов) – это процессы, катализируемые основаниями. В последние десятилетия в области химии ацетилена, свободной от переходных металлов, наметился прогресс, связанный с привлечением для активации тройной углерод-углеродной связи супероснований и суперкислот. В настоящей статье на примере недавних публикаций авторов (в основном за 2021 г.) анализируются успехи использования суперосновных сред в химии алкинов, а также электронодефицитных ацетиленов как объектов, особо чувствительных к действию оснований, для поиска новых препаративных реакций с участием тройной углерод- углеродной связи. Короткий период (один год) выбран для того, чтобы наглядно проиллюстрировать динамику и результативность исследований в данной области. В этом году были получены принципиальные результаты, которые затем развивались в последующие годы. Он в известном смысле оказался наиболее урожайным и наиболее ярко характеризует темпы и тенденции развития химии ацетилена.

Об авторах

Е. Ю. Шмидт

Федеральный исследовательский центр “Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук”

Email: boris_trofimov@irioch.irk.ru
664033 Иркутск, Россия

Б. А. Трофимов

Федеральный исследовательский центр “Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук”

Email: boris_trofimov@irioch.irk.ru
664033 Иркутск, Россия

Список литературы

  1. Dickstein J.I., Miller S.I. Ch. 19. Nucleophalic attacks on acetylenes. In: The chemistry of the carbon–carbon triple bond. Ch. 19. Patai S. (еd.). Wiley, Chichester, UK, 1978. P. 813–955. https://doi.org/10.1002/9780470771570.ch8
  2. Schmidt E.Yu., Semenova N.V., Ushakov I.A., Vashchenko A.V., Trofimov B.A. // Org. Lett. 2021. V. 23. P. 4743−4748. https://doi.org/10.1021/acs.orglett.1c01460
  3. Absalyamov D.Z., Vitkovskaya N.M., Orel V.B., Schmidt E.Yu., Trofimov B.A. // Asian J. Org. Chem. 2023. V. 12. e202300042. https://doi.org/10.1002/ajoc.202300042
  4. Muñiz K. // J. Am. Chem. Soc. 2007. V. 129. P. 14542–14543. https://doi.org/10.1021/ja075655f
  5. Sridharan V., Ribelles P., Estévez V., Villacampa M., Ramos M.T., Perumal P.T., Menéndez J.C. // Chem. Eur. J. 2012. V. 18. P. 5056–5063. https://doi.org/10.1002/chem.201103562
  6. Jin C.-Y., Wang Y., Liu Y.-Z., Shen C., Xu P.-F. // J. Org. Chem. 2012. V. 77. P. 11307−11312. https://doi.org/10.1021/jo301886j
  7. Feng J.-J., Zhang J. // ACS Catal. 2016. V. 6. P. 6651–6661. https://doi.org/10.1021/acscatal.6b02072
  8. Bhat C., Tilve S.G. // RSC Adv. 2014. V. 4. P. 5405–5452. https://doi.org/10.1002/chin.201416274
  9. Trepos R., Cervin G., Hellio C., Pavia H., Stensen W., Stensvåg K., Svendsen J.-S., Haug T., Svenson J. // J. Nat. Prod. 2014. V. 77. P. 2105–2113. https://doi.org/10.1021/np5005032
  10. Schmidt E.Yu., Semenova N.V., Tatarinova I.V., Ushakov I.A., Vashchenko A.V., Trofimov B.A. // Eur. J. Org. Chem. 2021. V. 2021. P. 2802–2806. https://doi.org/10.1002/ejoc.202100377
  11. Schmidt E.Yu., Trofimov B.A., Zorina N.V., Mikhaleva A.I., Ushakov I.A., Skital’tseva E.V., Kazheva O.N., Alexandrov G.G., Dyachenko O.A. // Eur. J. Org. Chem. 2010. V. 2010. P. 6727–6730. https://doi.org/10.1002/ejoc.201001229
  12. Bidusenko I.A., Schmidt E.Yu., Ushakov I.A., Trofimov B.A. // Eur. J. Org. Chem. 2018. V. 2018. P. 4845–4849. https://doi.org/10.1002/ejoc.201800850
  13. Schmidt E.Yu., Trofimov B.A. // Russ. Chem. Rev. 2024. V. 93. RCR5145. https://doi.org/10.59761/RCR5145
  14. Bidusenko I.A., Schmidt E.Yu., Ushakov I.A., Vashchenko A.V., Trofimov B.A. // Org. Lett. 2021. V. 23. P. 4121−4126. https://doi.org/10.1021/acs.orglett.1c01009
  15. Whittaker R.E., Dermenci A., Dong G. // Synthesis. 2016. V. 48. P. 161–183. https://doi.org/10.1055/s-0035-1560515
  16. Nájera C., Sydnes L.K., Yus M. // Chem. Rev. 2019. V. 119. P. 11110–11244. https://doi.org/10.1021/acs.chemrev.9b00277
  17. Li Y., Yu J., Bi Y., Yan G., Huang D. // Adv. Synth. Catal. 2019. V. 361. P. 4839–4881. https://doi.org/10.1002/adsc.201900611
  18. Wang Z.-Y., Wang K.-K., Chen R., Liu H., Chen K. // Eur. J. Org. Chem. 2020. V. 2020. P. 2456–2474. https://doi.org/10.1002/ejoc.201901921
  19. Worch J.C., Stubbs C.J., Price M.J., Dove A.P. // Chem. Rev. 2021. V. 121. P. 6744–6776. https://doi.org/10.1021/acs.chemrev.0c01076
  20. Trofimov B.A., Schmidt E.Yu., Zorina N.V., Ivanova E.V., Ushakov I.A. // J. Org. Chem. 2012. V. 77. P. 6880−6886. https://doi.org/10.1021/jo301005p
  21. Shabalin D.A., Dvorko M.Yu., Schmidt E.Yu., Trofimov B.A. // Org. Biomol. Chem. 2021. V. 19. P. 2703–2715. https://doi.org/10.1039/d1ob00193k
  22. Fontes L.F.B., da Silva R.N., Silva A.M.S., Guieu S. // ChemPhotoChem. 2020. V. 4. P. 5312–5317. http://dx.doi.org/10.1002/cptc.202000134
  23. Duan L., Chen Y., Jia J., Zong X., Sun Z., Wu Q., Xue S. // ACS Appl. Energy Mater. 2020. V. 3. P. 1672–1683. http://dx.doi.org/10.1021/acsaem.9b02152
  24. Sasaki I. // Synthesis. 2016. V. 48. P.1974–1992. http://dx.doi.org/10.1055/s-0035-1561974
  25. Shrestha A., Park S., Shin S., Kadayat T.M., Bist G., Katila P., Kwon Y., Lee E.-S. // Bioorg. Chem. 2018. V. 79. P. 1–18. https://doi.org/10.1016/j.bioorg.2018.03.033
  26. Baloutaki B.A., Sayahi M.H., Nikpassand M., Kefayati H. // Res. Chem. Intermed. 2020. V. 46. P. 1153–1163. https://link.springer.com/article/10.1007/s11164-019-04025-6
  27. Beauvarlet J., Das R.N., Alvarez-Valadez K., Martins I., Muller A., Darbo E., Richard E., Soubeyran P., Kroemer G., Guillon J., Mergny J.-L., Djavaheri-Mergny M. // Cancers. 2020. V. 12. P. 1621. https://doi.org/10.3390/cancers12061621
  28. Sobenina L.N., Tomilin D.N., Trofimov B.A. // Russ. Chem. Rev. 2014. V. 83. P. 475–501. https://doi.org/10.1070/rc2014v083n06abeh004418
  29. Sobenina L.N., Trofimov B.A. // Molecules. 2020. V. 25. P 2490. https://doi.org/10.3390/molecules25112490
  30. Tomilin D.N., Sobenina L.N., Ushakov I.A., Trofimov B.A. // Synthesis. 2021. V. 53. P. 1137–1148. https://doi.org/10.1055/s-0040-1706474
  31. Trofimov B.A., Belyaeva K.V. // Tetrahedron Lett. 2020. V. 61. P. 151991. https://doi.org/10.1016/j.tetlet.2020.151991
  32. Belyaeva K.V., Nikitina L.P., Afonon A.V., Grichshenko L.A., Trofimov B.A. // J. Org. Chem. 2021. V. 86. P. 3800–3809. https://doi.org/10.1021/acs.joc.0c02644
  33. Tarasova O.A., Tatarinova I.V., Vakul’skaya T.I., Khutsishvili S.S., Smirnov V.I., Klyba L.V., Prozorova G.F., Mikhaleva A.I., Trofimov B.A. // J. Organomet. Chem. 2013. V. 745–746. P. 1–7. https://doi.org/10.1016/j.jorganchem.2013.06.025
  34. Tarasova O.A., Nedolya N.A., Albanov A.I., Bagryanskaya I.Yu., Trofimov B.A. // J. Organomet. Chem. 2021. V. 933. P. 121651. https://doi.org/10.1016/j.jorganchem.2020.121651
  35. Шмидт Е.Ю., Трофимов Б.А. // ДАН. Химия, науки о материалах. 2022. Т. 505. С. 5–24. https://doi.org/10.31857/S268695352270008X
  36. Никитина Л.П., Беляева К.В., Гень В.С., Афонин А.В., Трофимов Б.А. // ДАН. Химия, науки о материалах. 2022. Т. 506. С. 3–7. https://doi.org/10.31857/S2686953522600404
  37. Bidusenko I.A., Schmidt E.Yu., Ushakov I.A., Vashchenko A.V., Protsuk N.I., Orel V.B., Vitkovskaya N.M., Trofimov B.A. // J. Org. Chem. 2022. V. 87. P. 12225–12239. https://doi.org/10.1021/acs.joc.2c01372
  38. Bidusenko I.A., Schmidt E.Yu., Protsuk N.I., Ushakov I.A., Trofimov B.A. // Mendeleev Commun. 2023. V. 33. P. 24–26. https://doi.org/10.1016/j.mencom.2023.01.007
  39. Schmidt E.Yu., Tatarinova I.V., Lobanova N.A., Ushakov I.A., Bagryanskaya I.Yu., Trofimov B.A. // Org. Biomol. Chem. 2023. V. 21. P. 7209–7218. https://doi.org/10.1039/d3ob01311a
  40. Bidusenko I.A., Schmidt E.Yu., Protsuk N.I., Ushakov I.A., Trofimov B.A. // Mendeleev Commun. 2024. V. 34. P. 110–112. https://doi.org/10.1016/j.mencom.2024.01.033
  41. Bidusenko I.A., Schmidt E.Yu., Kozlova D.O., Protsuk N.I., Ushakov I.A., Bagryanskaya I.Yu., Orel V.B., Zubarev A.A., Trofimov B.A. // Org. Lett. 2024. V. 26. P. 4963−4968. https://doi.org/10.1021/acs.orglett.4c01531

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».