Биомаркеры и таргетная терапия при раке легких
- Авторы: Шнейдер О.В.1, Камилова Т.А.1, Голота А.С.1, Сарана А.М.2, Щербак С.Г.1,3
-
Учреждения:
- Санкт-Петербургское государственное бюджетное учреждение здравоохранения «Городская больница № 40»
- Комитет по здравоохранению Администрации Санкт-Петербурга
- Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет»
- Выпуск: Том 3, № 1 (2021)
- Страницы: 74-94
- Раздел: НАУЧНЫЙ ОБЗОР
- URL: https://bakhtiniada.ru/2658-6843/article/view/63268
- DOI: https://doi.org/10.36425/rehab63268
- ID: 63268
Цитировать
Полный текст
Аннотация
Прецизионная (таргетная) медицина предлагается в качестве новой стратегии для выявления и разработки новых высокоселективных лекарственных средств против конкретных таргетных показателей заболевания и более точного подбора лекарственных средств (тирозинкиназных ингибиторов, опухолеспецифичных моноклональных антител) для целевых групп пациентов. Прецизионная медицина может быть важным подходом к созданию новых, более безопасных терапевтических средств для пациентов с генными мутациями, аберрациями или избыточной экспрессией белка. Прецизионная медицина требует понимания мутационных процессов и гетерогенности между раковыми клетками во время эволюции опухоли. Настоящий обзор кратко описывает различные виды гетерогенности и потенциальные ассоциации с лекарственной эффективностью и резистентностью к терапии, подчеркивает важность разработки функциональных биомаркеров для мониторинга лекарственной эффективности и резистентности и определения возможностей и проблем прецизионной медицины для клинической практики.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Ольга Вадимовна Шнейдер
Санкт-Петербургское государственное бюджетное учреждение здравоохранения «Городская больница № 40»
Автор, ответственный за переписку.
Email: o.shneider@gb40.ru
ORCID iD: 0000-0001-8341-2454
SPIN-код: 8405-1051
к.м.н.
Россия, Санкт-ПетербургТатьяна Аскаровна Камилова
Санкт-Петербургское государственное бюджетное учреждение здравоохранения «Городская больница № 40»
Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-код: 2922-4404
к.б.н.
Россия, Санкт-ПетербургАлександр Сергеевич Голота
Санкт-Петербургское государственное бюджетное учреждение здравоохранения «Городская больница № 40»
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-код: 7234-7870
к.м.н., доцент
Россия, Санкт-ПетербургАндрей Михайлович Сарана
Комитет по здравоохранению Администрации Санкт-Петербурга
Email: asarana@mail.ru
ORCID iD: 0000-0003-3198-8990
SPIN-код: 7922-2751
к.м.н.
Россия, Санкт-ПетербургСергей Григорьевич Щербак
Санкт-Петербургское государственное бюджетное учреждение здравоохранения «Городская больница № 40»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет»
Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5047-2792
SPIN-код: 1537-9822
д.м.н., профессор
Россия, Санкт-ПетербургСписок литературы
- Nitu R, Rogobete AF, Gundogdu F, et al. microRNAs expression as novel genetic biomarker for early prediction and continuous monitoring in pulmonary cancer. Biochem Genet. 2017;55(4):281–290. doi: 10.1007/s10528-016-9789-y
- Wu D, Wang DC, Cheng Y, et al. Roles of tumor heterogeneity in the development of drug resistance: A call for precision therapy. Semin Cancer Biol. 2017;42(1):13–19. doi: 10.1016/j.semcancer.2016.11.006
- Travis WD, Bambrilla E, Burke AP, et al. WHO classification of tumours of the lung, pleura, thymus and heart (IARC WHO classification of tumours). 4th edition. Geneva (Switzerland): World Health Organization; 2015.
- Devarakonda S, Morgensztern D, Govindan R. Genomic alterations in lung adenocarcinoma. Lancet Oncol. 16 (7) (2015) e342–351. doi: 10.1016/S1470-2045(15)00077-7
- Köhler J. Second-Line Treatment of NSCLC-The pan-ErbB inhibitor afatinib in times of shifting paradigms. Front Med (Lausanne). 2017;4:9. doi: 10.3389/fmed.2017.00009
- Thomas A, Liu SV, Subramaniam DS, Giaccone G. Refining the treatment of NSCLC according to histological and molecular subtypes. Nat Rev Clin Oncol. 2015;12(9): 511–526. doi: 10.1038/nrclinonc.2015.90
- Villalobos P, Wistuba II. Lung cancer biomarkers. Hematol Oncol Clin North Am. 2017;31(1):13–29. doi: 10.1016/j.hoc.2016.08.006
- Gridelli C, Ciardiello F, Gallo C, et al. First-line erlotinib followed by second-line cisplatin-gemcitabine chemotherapy in advanced non-small-cell lung cancer: the TORCH randomized trial. J Clin Oncol. 2012;30(24):3002–3011. doi: 10.1200/JCO.2011.41.2056
- Fortunato O, Verri C, Pastorino U et al. MicroRNA profile of lung tumor tissues is associated with a high risk plasma miRNA signature. Microarrays (Basel). 2016;5(3):E18. doi: 10.3390/microarrays5030018
- Schuler M, Wu YL, Hirsh V, et al. First-line afatinib versus chemotherapy in patients with non-small cell lung cancer and common epidermal growth factor receptor gene mutations and brain metastases. J Thorac Oncol. 2016;11(3): 380–390. doi: 10.1016/j.jtho.2015.11.014
- Park K, Tan EH, O’Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016; 17(5):577–589. doi: 10.1016/ S1470-2045(16)30033-X52
- Zhang X, Ran YG, Wang KJ. Risk of severe rash in cancer patients treated with EGFR tyrosine kinase inhibitors: a systematic review and meta-analysis. Future Oncol. 2016; 12(23):2741–2753. doi: 10.2217/fon-2016-0180
- Yang JC, Sequist LV, Zhou C, et al. Effect of dose adjustment on the safety and efficacy of afatinib for EGFR mutation-positive lung adenocarcinoma: post hoc analyses of the randomized LUX-Lung 3 and 6 trials. Ann Oncol. 2016;27(11):2103–2110. doi: 10.1093/annonc/mdw322
- Oxnard GR, Thress KS, Alden RS, et al. Association between plasma genotyping and outc omes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol. 2016;34(28):3375–3382. doi: 10.1200/JCO.2016.66.7162 59
- Sacher AG, Paweletz C, Dahlberg SE, et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol. 2016;2(8):1014–1022. doi: 10.1001/jamaoncol.2016.0173
- Yanagita M, Redig AJ, Paweletz CP, et al. A prospective evaluation of circulating tumor cells and cell-free DNA in EGFR mutant non-small cell lung cancer patients treated with erlotinib on a phase II trial. Clin Cancer Res. 2016;22(24): 6010–6020. doi: 10.1158/1078-0432.CCR-16-0909
- Iuchi T, Shingyoji M, Itakura M, et al. Frequency of brain metastases in non-small-cell lung cancer, and their association with epidermal growth factor receptor mutations. Int J Clin Oncol. 2015;20(4):674–679. doi: 10.1007/s10147-014-0760-9
- Ballard P, Yates JW, Yang Z, et al. Preclinical comparison of osimertinib with other EGFR-TKIs in EGFR-Mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin Cancer Res. 2016; 22(20):5130–5140. doi: 10.1158/1078-0432.CCR- 16-0399
- Hata A, Katakami N, Yoshioka H, et al. Spatiotemporal T790M heterogeneity in individual patients with EGFR- mutant non-small-cell lung cancer after acquired resistance to EGFR-TKI. J Thorac Oncol. 2015;10(11):1553–1559. doi: 10.1097/JTO.0000000000000647
- Banno E, Togashi Y, Nakamura Y, et al. Sensitivities to various epidermal growth factor receptor-tyrosine kinase inhibitors of uncommon epidermal growth factor receptor mutations L861Q and S768I: what is the optimal epidermal growth factor receptor-tyrosine kinase inhibitor? Cancer Sci. 2016;107(8):1134–1140. doi: 10.1111/cas.12980
- Kobayashi Y, Togashi Y, Yatabe Y, et al. EGFR Exon 18 mutations in lung cancer: molecular predictors of augmented sensitivity to afatinib or neratinib as compared with first- or third-generation TKIs. Clin Cancer Res. 2015;21(23): 5305–5313. doi: 10.1158/1078-0432.CCR-15-1046
- Saxon JA, Sholl LM, Janne PA. Brief report: EGFR L858M/L861Q cis mutations confer selective sensitivity to afatinib. J Thorac Oncol. 2017;12(5):884–889. doi: 10.1016/j.jtho.2017.01.006
- Niederst MJ, Hu H, Mulvey HE, et al. The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin Cancer Res. 2015;21(17): 3924–3933. doi: 10.1158/1078- 0432.CCR-15-0560
- Yu HA, Tian SK, Drilon AE, et al. Acquired resistance of egfr-mutant lung cancer to a T790M-specific EGFR inhibitor: emergence of a third mutation (C797S) in the EGFR tyrosine kinase domain. JAMA Oncol. 2015;1(7): 982–984. doi: 10.1001/jamaoncol.2015.1066
- Sholl LM. Biomarkers in lung adenocarcinoma: a decade of progress. Arch Pathol Lab Med. 2015;139(4):469–480. doi: 10.5858/arpa.2014-0128-RA
- Sullivan I, Planchard D. ALK inhibitors in non-small cell lung cancer: the latest evidence and developments. Ther Adv Med Oncol. 2016;8(1):32–47. doi: 10.1177/1758834015617355
- Kempf E, Rousseau B, Besse B, et al. KRAS oncogene in lung cancer: focus on molecularly driven clinical trials. Eur Respir Rev. 2016;25(139):71–76. doi: 10.1183/16000617.0071-2015.
- Finocchiaro G, Toschi L, Gianoncelli L, et al. Prognostic and predictive value of MET deregulation in non-small cell lung cancer. Ann Transl Med. 2015;3(6):83. doi: 10.3978/j.issn.2305-5839.2015.03.43
- Ko B, He T, Gadgeel S, Halmos B. MET/HGF pathway activation as a paradigm of resistance to targeted therapies. Ann Transl Med. 2017;5(1):4. doi: 10.21037/atm.2016.12.09
- Byers LA, Diao L, Wang J, et al, An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19(1)279–290. doi: 10.1158/1078-0432.CCR-12-1558
- Drilon A, Cappuzzo F, Ou SI, Camidge DR. Targeting MET in lung cancer: will expectations finally be MET? J Thorac Oncol. 2017;12(1):15–26. doi: 10.1016/j.jtho.2016.10.014
- Awad MM, Oxnard GR, Jackman DM, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent met genomic amplification and c-Met overexpression. J Clin Oncol. 2016; 34(7):721–730. doi: 10.1200/JCO.2015.63.4600
- Liu X, Jia Y, Stoopler MB, et al. Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol. 2016;34(8):794–802. doi: 10.1200/JCO.2015.62.0674
- Tong JH, Yeung SF, Chan AW, et al. MET amplification and exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis. Clin Cancer Res. 2016;15;22(12):3048–3056. doi: 10.1158/1078-0432.CCR-15-2061
- Camidge DR, Moran T, Demedts I, et al. A randomized, open-label, phase 2 study of emibetuzumab plus erlotinib (LY+E) and emibetuzumab monotherapy (LY) in patietns with acquired resistance to erlotinib and MET diagnostic positive (MET Dx+) metastatic NSCLC. J Clin Oncol. 2016; 34(15 suppl):9070. doi: 10.1200/jco.2016.34.15_suppl.9070
- Planchard D, Kim TM, Mazieres J, et al. Dabrafenib in patients with BRAFV600Epositive advanced non-small-cell lung cancer: a single-arm, multicentre, openlabel, phase 2 trial. Lancet Oncol. 2016;17(5):642–650. doi: 10.1016/S1470-2045(16)00077-2
- Chuang JC, Liang Y, Wakelee HA. Neoadjuvant and adjuvant therapy for non-small cell lung cancer. Hematol Oncol Clin North Am. 2017;31(1):31–44. doi: 10.1016/j.hoc.2016.08.011
- Zwitter M, Rajer M, Stanic K, et al. Intercalated chemotherapy and erlotinibfor non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations. Cancer Biol Ther. 2016;17(8):833–839. doi: 10.1080/15384047.2016.1195049
- Planchard D, Loriot Y, Andre F, et al. EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. Ann Oncol. 2015;26(10): 2073 2078. doi: 10.1093/annonc/mdv319
- Jänne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372(18):1689–1699. doi: 10.1056/NEJMoa1411817
- Shi P, Oh YT, Zhang G, et al. Met gene amplification and protein hyperactivation is a mechanism of resistance to both first and third generation EGFR inhibitors in lung cancer treatment. Cancer Lett. 2016;380(2):494–504. doi: 10.1016/j.canlet.2016.07.021
- Thress KS, Paweletz CP, Felip E, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015;21(6):560–562. doi: 10.1038/nm.3854
- Gainor JF, Niederst MJ, Lennerz JK, et al. Dramatic response to combination erlotinib and crizotinib in a patient with advanced, EGFR-mutant lung cancer harboring de novo MET amplification. J Thorac Oncol. 2016;11(7): e83–85. doi: 10.1016/j.jtho.2016.02.021
- Womack JP, Varella-Garcia M, Camidge DR. Waxing and waning of MET amplification in EGFR-mutated NSCLC in response to the presence and absence of erlotinib selection pressure. J Thorac Oncol. 2015;10(12):e115–118. doi: 10.1097/JTO.0000000000000642
- Oxnard GR, Yang JC, Yu H, et al. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol. 2020;31(4):507–516. doi: 10.1016/j.annonc.2020.01.013
- Khozin S, Blumenthal GM, Zhang L, et al. FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin Cancer Res. 2015; 21(11):2436–2439. doi: 10.1158/1078-0432.CCR-14-3157
- Balar AV, Weber JS. PD-1 and PD-L1 antibodies in cancer: current status and future directions. Cancer Immunol Immunother. 2017;66(5):551–564. doi: 10.1007/s00262-017-1954-6
- Sun JM, Zhou W, Choi YL, et al. Prognostic significance of programmed cell death ligand 1 in patients with non-small-cell lung cancer: a large cohort study of surgically resected cases. J Thorac Oncol. 2016;11(7):1003–1011. doi: 10.1016/j.jtho.2016.04.007
- Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016; 387(10030):1837–1846. doi: 10.1016/S0140-6736(16)00587-0
- Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of Nivolumab (Anti-Programmed Death 1 Antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33(18):2004–2012. doi: 10.1200/JCO.2014.58.3708
- Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–1639. doi: 10.1056/NEJMoa1507643
- Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamouscell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–135. doi: 10.1056/NEJMoa1504627
- Gettinger S, Rizvi NA, Chow LQ, et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2016;34(25):2980–2987. doi: 10.1200/JCO.2016.66.9929
- Rizvi NA, Hellmann MD, Brahmer JR, et al. Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2016;34(25):2969–2979. doi: 10.1200/JCO.2016.66.9861
- Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–2028. doi: 10.1056/NEJMoa1501824
- Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced nonsmall-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–1550. doi: 10.1016/S0140-6736(15)01281-7
- Barlesi FP, Ciardiello F, Pawel JV, et al. Primary analysis from OAK, a randomized phase III study comparing atezolizumab with docetaxel in 2L/3L NSCLC. In: ESMO Congress, Vol. LBA 44. Copenhagen, Denmark; 2016.
- Wang P, Yang D, Zhang H, et al. Early detection of lung cancer in serum by a panel of MicroRNA biomarkers. Clin Lung Cancer. 2015;16(4):313–319. doi: 10.1016/j.cllc.2014.12.006
- Nadal E, Truini A, Nakata A, et al. A novel serum 4-microRNA signature for lung cancer detection. Sci Rep. 2015;5:12464. doi: 10.1038/srep12464
- Wozniak MB, Scelo G, Muller DC, et al. Circulating microRNAs as non-invasive biomarkers for early detection of non-small-cell lung cancer. PLoS ONE. 2015; 10(5):e0125026. doi: 10.1371/journal.pone.0125026
- Xing L, Su J, Guarnera MA, et al. Sputum microRNA biomarkers for identifying lung cancer in indeterminate solitary pulmonary nodules. Clin Cancer Res. 2015;21(2): 484–489. doi: 10.1158/1078-0432.CCR-14-1873
- Sun L, Chen Y, Su Q, et al. Increased plasma miRNA-30a as a biomarker for non-small cell lung cancer. Med Sci Monit. 2016;22:647–655. doi: 10.12659/MSM.897330
- Tian F, Li R, Chen Z, et al. Differentially expressed miRNAs in tumor, adjacent, and normal tissues of lung adenocarcinoma. Biomed Res Int. 2016;2016:1428271. doi: 10.1155/2016/1428271
- Su K, Zhang T, Wang Y, Hao G. Diagnostic and prognostic value of plasma microRNA-195 in patients with non-small cell lung cancer. World J Surg Oncol. 2016;14(1):224. doi: 10.1186/s12957-016-0980-8
- Chen S-W, Wang T-B, Tian Y-H, Zheng Y-G. Down-regulation of microRNA-126 and microRNA-133b acts as novel predictor biomarkers in progression and metastasis of non small cell lung cancer. Int J Clin Exp Pathol. 2015; 8(11):14983–14988.
- Wang X, Zhi X, Zhang Y, et al. Role of plasma MicroRNAs in the early diagnosis of non-small-cell lung cancers: a case-control study. J Thorac Dis. 2016;8(7):1645–1652. doi: 10.21037/jtd.2016.06.21
- Halvorsen AR, Bjaanæs MM, Holm A, et. al. Unique combination of 6 circulating microRNAs for early detection of lung cancer. J Thorac Oncol. 2015;10:S736.
- Nakamura H, Nishimura T. History, molecular features, and clinical importance of conventional serum biomarkers in lung cancer. Surg Today. 2017;47(9):1037–1059. doi: 10.1007/s00595-017-1477-y
- Wang XB, Li J, Han Y. Prognostic significance of preoperative serum carcinoembryonic antigen in non-small cell lung cancer: a meta-analysis. Tumour Biol. 2014;35(10): 10105–10110. doi: 10.1007/s13277-014-2301-6
- Inomata M, Hayashi R, Yamamoto A, et al. Plasma neuron-specific enolase level as a prognostic marker in patients with non-small cell lung cancer receiving gefitinib. Mol Clin Oncol. 2015;3(4):802–806. doi: 10.3892/mco.2015.568
- Suh KJ, Keam B, Kim M, et al. Serum neuron-specific enolase levels predict the efficacy of first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in patients with non-small cell lung cancer harboring EGFR mutations. Clin Lung Cancer. 2016;17(4):245–252.e1. doi: 10.1016/j.cllc.2015.11.012
- Yu D, Du K, Liu T, Chen G. Prognostic value of tumor markers, NSE, CA125 and SCC, in operable NSCLC Patients. Int J Mol Sci. 2013;14(6):11145–11156. doi: 10.3390/ijms140611145
Дополнительные файлы
