Органоспецифические проявления «длинного COVID»

Обложка

Цитировать

Полный текст

Аннотация

Пандемия COVID-19 серьёзно повлияла на систему здравоохранения во всём мире и вызвала значительную заболеваемость и смертность. Возникновение и значение последствий C0VID-19 были осознаны, когда оказалось, что значительная часть пациентов продолжает страдать от различных симптомов в течение многих месяцев и лет после выздоровления от острой фазы инфекции. Эти осложнения наблюдались не только в дыхательных путях, но и во многих системах органов. Ведение таких пациентов требует междисциплинарных усилий, поскольку осложнения варьируют как по локализации, так и по тяжести.

Состояние после COVID-19 («длинный COVID») представляет собой ряд различных поствирусных синдромов, которые требуют соответствующей классификации. Необходимы сбор большого объёма данных и регистрация всех физических и нейропсихиатрических симптомов, сохраняющихся более 12 недель без альтернативного объяснения. Процесс сбора и анализа данных должен контролироваться с учётом всех сопутствующих факторов, включая последствия госпитализации в отделение реанимации, социальную изоляцию и другие эффекты.

Отсутствие в настоящее время эффективного лечения отражает неясные причины состояний после COVID-19, на которые нельзя должным образом воздействовать, пока не будет установлен и подтверждён их механизм. Своевременный сбор данных и выявление физиологических механизмов, лежащих в основе долгосрочных клинических проявлений COVID-19 и состояний после COVID-19, жизненно важны для разработки соответствующей эффективной терапии.

Об авторах

Сергей Григорьевич Щербак

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN-код: 1537-9822

 доктор мед. наук, профессор

Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-Петербург

Дмитрий Александрович Вологжанин

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-код: 7922-7302

доктор мед. наук

Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-Петербург

Татьяна Аскаровна Камилова

Городская больница № 40 Курортного административного района

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-код: 2922-4404

канд. биол. наук

Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б

Александр Сергеевич Голота

Городская больница № 40 Курортного административного района

Автор, ответственный за переписку.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-код: 7234-7870

кандидат медицинских наук, доцент, начальник клинико-исследовательского сектора организационно-методического отдела по медицинской реабилитации

Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б

Станислав Вячеславович Макаренко

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN-код: 8114-3984

ассистент

Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-Петербург

Андрей Михайлович Сарана

Санкт-Петербургский государственный университет; Комитет по здравоохранению администрации Санкт-Петербурга

Email: asarana@mail.ru
ORCID iD: 0000-0003-3198-8990
SPIN-код: 7922-2751

кандидат мед. наук, доцент

Россия, Санкт-Петербург; Санкт-Петербург

Список литературы

  1. Lambert N., Corps S., El-Azab S.A., et al. The other COVID-19 survivors: Timing, duration, and health impact of post-acute sequelae of SARS-CoV-2 infection // J Clin Nurs. 2022. Vol. 10.1111/jocn. 16541. doi: 10.1111/jocn.16541
  2. Visser O., Golla S.S., Verfaillie S.C., et al. Long COVID is associated with extensive in-vivo neuroinflammation on [18F]DPA-714 PET // medRxiv. 2022. Preprint. doi: 10.1101/2022.06.02.22275916
  3. Proal A.D., Van Elzakker M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): An overview of biological factors that may contribute to persistent symptoms // Front Microbiol. 2021. N 12. P. 698169. doi: 10.3389/fmicb.2021.698169
  4. Higgins V., Sohaei D., Diamandis E.P., Prassas I. COVID-19: From an acute to chronic disease? Potential long-term health consequences//Crit Rev Clin Lab Sci. 2021. Vol. 58, N 5. P. 297-310. doi: 10.1080/10408363.2020.1860895
  5. Finney L.J., Doughty R., Lovage S., et al. Lung function deficits and symptom burden in survivors of COVID-19 requiring mechanical ventilation// Ann Am Thorac Soc. 2021. Vol. 18, N 10. P. 1740-1743. doi: 10.1513/AnnalsATS.202102-099RL
  6. Zhao Y.M., Shang Y.M., Song W.B., et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery// EClinicalMedicine. N 25. P. 100463. doi: 10.1016/j.eclinm.2020.100463
  7. Arnold D.T., Hamilton F.W., Milne A., et al. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: Results from a prospective UK cohort // Thorax. 2021. Vol. 76, N 4. P. 399-401. doi: 10.1136/thoraxjnl-2020-216086
  8. Vijayakumar B„ Tonkin J., Devaraj A., et al. CT lung abnormalities after COVID-19 at 3 months and 1 year after hospital discharge // Radiology. 2022. Vol. 303, N 2. P. 444-454. doi: 10.1148/radiol.2021211746
  9. Mandal S., Barnett J., Brill S.E., et al. "Long-COVID": A cross- sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19 // Thorax. 2021. Vol. 76, N 4. P. 396-398. doi: 10.1136/thoraxjnl-2020-215818
  10. Wu X., Liu X., Zhou Y., et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19- related hospitalisation: A prospective study // Lancet Respir Med. Vol. 9, N 7. P. 747-754. doi: 10.1016/52213-2600(21)00174-0
  11. Van Gassel R.J., Bels J.L., Raafs A., et al. High prevalence of pulmonary sequelae at 3 months after hospital discharge in mechanically ventilated survivors of COVID-19 // Am J. Respir Crit Care Med. 2021. Vol. 203, N 3. P. 371-374. doi: 10.1164/rccm.202010-3823LE
  12. Xu J., Xu X., Jiang L., et al. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis // Respir Res. 2020. Vol. 21, N 1. P. 182. doi: 10.1186/S12931-020-01445-6
  13. Wells A.U., Devaraj A., Desai S.R. Interstitial lung disease after COVID-19 infection: A catalog of uncertainties // Radiology. 2021 Apr. Vol. 299, N 1. P. E216-E218. doi: 10.1148/radiol.2021204482
  14. Whitaker M„ Elliott J., Chadeau-Hyam M., et al. Persistent symptoms following SARS-CoV-2 infection in a random community sample of 508,707 people // medRxiv. 2021. Vol. 18, N 9. P. 1-40. doi: 10.1 101/2021.06.28.21259452
  15. Havervall S., Rosell A., Phillipson M., et al. Symptoms and functional impairment assessed 8 months after mild COVID-19 among health care workers // JAMA. 2021. Vol. 325, N 19. P. 2015-2016. doi: 10.1001/jama.2021.5612
  16. Huang L, Yao Q., Gu X., et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study// Lancet. 2021. Vol. 398, N 10302. P. 747-758. doi: 10.1016/50140-6736(21)01755-4
  17. Davis H.E., Assaf G.S., McCorkell L., et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact // E. Clin Med. 2021. N 38. P. 101019. doi: 10.1016/j.eclinm.2021.101019
  18. Puntmann V.O., Carerj M.L, Wieters I., et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19) // JAMA Cardiol. Vol. 5, N 11. P. 1265-1273. doi: 10.1001 /jamacardio.2020.3557
  19. Xie Y., Xu E., Bowe B„ Al-Aly Z. Long-term cardiovascular outcomes of COVID-19 // Nat Med. 2022. Vol. 28, N 3. P. 583-590. doi: 10.1038/s41591-022-01689-3
  20. Chung M.K., Zidar D.A., Bristow M.R., et al. COVID-19 and cardiovascular disease: From bench to bedside // Circ Res. 2021. Vol. 128, N 8. P. 1214-1236. doi: 10.1161/ClRCRESAHA. 121.317997
  21. Delorey T.M., Ziegler C.G., Heimberg G., et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets // Nature.Vol. 595, N 7865. P. 107-113. doi: 10.1038/s41586-021 -03570-8
  22. Gluckman T.J., Bhave N.M., Allen L.A., et al. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: Myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: A report of the American College of Cardiology Solution Set Oversight Committee // J Am Coll Cardiol. 2022. Vol. 79, N 17. P. 1717-1756. doi: 10.1016/j.jacc.2022.02.003
  23. Rezel-Potts E., Douiri A.B., Sun X., et al. Cardiometabolic outcomes up to 12 months after COVID-19 infection. A matched cohort study in the UK // PLoS Med. 2022. Vol. 19, N 7. P. e 1004052. doi; 10.1371/journal.pmed.1004052
  24. Rajpal S., Tong M.S., Borchers J., et al. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection // JAMA Cardiol. 2021. Vol. 6, N 1. P. 116-118. doi: /jamacardio.2020.4916
  25. Singh I., Joseph P., Heerdt P.M., et al. Persistent exertional intolerance after COVID-19: Insights from invasive cardiopulmonary exercise testing // Chest. 2022. Vol. 161, N 1. P. 54-63. doi: 10.1016/j.chest.2021.08.010
  26. Stahlberg M„ Reistam U., Fedorowski A., et al. Post-COVID-19 tachycardia syndrome: A distinct phenotype of post-acute COVID-19 syndrome // Am J Med. 2021. Vol. 134, N 12. P. 1451-1456. doi: 10.1016/j.amjmed.2021.07.004
  27. Aparisi A., Ybarra-Falcon C., Garcia-Gomez M., et al. Exercise ventilatory inefficiency in post-COVID-19 syndrome: Insights from a prospective evaluation //J Clin Med. 2021. Vol. 10, N 12. P. 2591. doi: 10.3390/jcm10122591
  28. Mancini D.M., Brunjes D.L, Lala A., et al. Use of cardiopulmonary stress testing for patients with unexplained dyspnea post-coronavirus disease // J Am Coll Cardiol. 2021. Vol. 9, N 12. P. 927-937. doi: 10.1016/j.jchf.2021.10.002
  29. Espejo C., Mejia-Renteria H., Travieso A., et al. Myocardial ischaemia of non-obstructive origin as a cause of new onset anginal chest pain in the long COVID syndrome // Eur Heart J. 2021. Vol. 42, Suppl. 1. P. ehab724— 1078. doi: 10.1093/eurheartj/ehab724.1078
  30. Rinaldo R.F., Mondoni M., Parazzini E.M., et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors II Eur Respir J. 2021. Vol. 58, N 2. P. 2100870. doi: 10.1183/13993003.00870-2021
  31. Singh I., Joseph P., Heerdt P.M., et al. Persistent exertional intolerance after COVID-19: Insights from invasive cardiopulmonary exercise testing // Chest. 2022. Vol. 161, N 1. P. 54-63. doi: 10.1016/j.chest.2021.08.010
  32. Blomberg B„ Mohn K.G., Brokstad K.A., et al.; Bergen COVID-19 Research Group. Long COVID in a prospective cohort of home- isolated patients // Nat Med. 2021. Vol. 27, N 9. P. 1607-1613. doi: 10.1038/s41591-021-01433-3
  33. Raj S.R., Arnold A.C., Barboi A., et al. Long-COVID postural tachycardia syndrome: An American Autonomic Society statement // Clin Auton Res. 2021. Vol. 31, N 3. P. 365-368. doi: 10.1007/s10286-021-00798-2
  34. Mahmoud Z., East L, Gleva M., et al. Cardiovascular symptom phenotypes of post-acute sequelae of SARS-CoV-2 // Int J Cardiol. N 366. P. 35-41. doi: 10.1016/j.ijcard.2022.07.018
  35. Peluso M.J., Lu S., Tang A.F., et al. Markers of immune activation and inflammation in individuals with postacute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 infection // J Infect Dis. Vol. 224, N 11. P. 1839-1848. doi: 10.1093/infdis/jiab490
  36. Wang E.Y., Mao T., Klein J., et al. Diverse functional autoantibodies in patients with COVID-19 // Nature. 2021. Vol. 595, N 7866. P. 283-288. doi: 10.1038/s41586-021 -03631-y
  37. Visvabharathy L., Hanson B„ Orban Z., et al. Neuro-COVID long- haulers exhibit broad dysfunction in T cell memory generation and responses to vaccination // medRxiv. 2021. Vol. 2021. P. 1-48. doi: 10.1101/2021.08.08.21261763
  38. Gold J.E., Okyay R.A., Licht W.E., Hurley D.J. Investigation of long COVID prevalence and its relationship to Epstein-Barr virus reactivation // Pathogens. 2021. Vol. 10, N 6. P. 763. doi: 10.33 90/pathogens 10060763
  39. Charfeddine S., Amor H„ Jdidi J., et al. Long COVID-19 syndrome: Is it related to microcirculation and endothelial dysfunction? Insights from TUN-EndCOV Study // Front Cardiovasc Med. 2021. N 8. P. 745758. doi: 10.3389/fcvm.2021.745758
  40. Baratto C., Caravita S., Faini A, et al. Impact of COVID-19 on exercise pathophysiology: A combined cardiopulmonary and echocardiographic exercise study // J. Appl Physiol. 2021. Vol. 130, N 5. P. 1470-1478. doi: 10.1152/japplphysiol.00710.2020
  41. Clavario P., De Marzo V., Lotti R., et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up // Int J Cardiol. N 340. P. 113-118. doi: 10.1016/j.ijcard.2021.07.033
  42. Sukocheva O.A., Maksoud R., Beeraka N.M., et al. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/ chronic fatigue syndrome // J Adv Res. 2022. N 40. P. 179-196. doi: 10.1016/j.jare.2021.11.013
  43. Dani M„ Dirksen A., Taraborrelli P., et al. Autonomic dysfunction in “long COVID”: Rationale, physiology and management strategies // Clin Med (Lond). 2021. Vol. 21, N 1. P. e63-e67. doi: 10.7861/clinmed.2020-0896
  44. Becker R.C. COVID-19-associated vasculitis and vasculopathy // J Thromb Thrombolysis. 2020. Vol. 50, N 3. P. 499-511. doi: 10.1007/sl 1239-020-02230-4
  45. Wang S.Y., Adejumo P„ See C„ et al. Characteristics of patients referred to a cardiovascular disease clinic for post-acute sequelae of SARS-CoV-2 infection // Am Heart J Plus. 2022. N 18. P. 100176. doi: 10.1016/j.ahjo.2022.100176
  46. Frontera J.A., Simon N.M. Bridging knowledge gaps in the diagnosis and management of neuropsychiatric sequelae of COVID-19 // JAMA Psychiatry. 2022. Vol. 79, N 8. P. 811-817. doi:/jamapsychiatry.2022.1616
  47. Oran D.P., Topol E.J. The proportion of SARS-CoV-2 infections that are asymptomatic // Ann Intern Med. 2021. Vol. 174, N 9. P. 1344-1345. doi: 10.7326/L21-0491
  48. Frontera J.A., Sabadia S., Laichan R., et al. A prospective study of neurologic disorders in hospitalized patients with COVID-19 in New York City // Neurology. 2021. Vol. 96, N 4. P. e575—e586. doi: 10.1212/WNL.0000000000010979
  49. Misra S., Kolappa K„ Prasad M., et al. Frequency of neurologic manifestations in COVID-19: A systematic review and metaanalysis // Neurology. 2021. Vol. 97, N 23. P. e2269—e2281. doi: 10.1212/WNL.0000000000012930
  50. Deng J., Zhou F., Hou W., et al. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: A metaanalysis // Ann N. Y. Acad Sci. 2021. Vol. 1486, N. 1. P. 90-111. doi: 10.1111/nyas.14506
  51. Krishnamoorthy Y., Nagarajan R., Saya G.K., Menon V. Prevalence of psychological morbidities among general population, healthcare workers and COVID-19 patients amidst the COVID-19 pandemic: A systematic review and meta-analysis // Psychiatry Res. 2020. N 293. P. 113382. doi: 10.1016/j.psychres.2020.113382
  52. Taquet M., Luciano S., Geddes J.R., et al. Bidirectional associations between COVID-19 and psychiatric disorder: Retrospective cohort studies of 62354 COVID-19 cases in the USA // Lancet Psychiatry. Vol. 8, N 2. P. 130-140. doi: 10.1016/S2215-0366(20)30462-4
  53. Taquet M., Geddes J.R., Husain M., et al. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: A retrospective cohort study using electronic health records // Lancet Psychiatry. 2021. Vol. 8, N 5. P. 416-427. doi: 10.1016/S2215-0366(21)00084-5
  54. Vai B„ Mazza M.G., Colli C., et al. Mental disorders and risk of COVID-19-related mortality, hospitalisation, and intensive care unit admission: a systematic review and meta- analysis // Lancet Psychiatry. 2021. Vol. 8, N 9. P. 797-812. doi: 10.1016/52215-0366(21)00232-7
  55. Frontera J.A., Yang D., Lewis A., et al. A. prospective study of long-term outcomes among hospitalized COVID-19 patients with and without neurological complications // J. Neurol Sci. 2021. N 426. P. 117486. doi: 10.1016/j.jns.2021.117486
  56. Frontera J.A., Boutajangout A., Masurkar A.V., et al. Comparison of serum neurodegenerative biomarkers among hospitalized COVID-19 patients versus non-COVID subjects with normal cognition, mild cognitive impairment, or Alzheimer's dementia // Alzheimers Dement. 2022. Vol. 18, N 5. P. 899-910. doi: 10.1002/alz. 12556
  57. Mazza M.G., Palladini M„ De Lorenzo R., et al.; COVID-19 BioB Outpatient Clinic Study group. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up // Brain Behav Immun. 2021. N 94. P. 138-147. doi: 10.1016/j.bbi.2021.02.021
  58. Xie Y., Xu E., Al-Aly Z. Risks of mental health outcomes in people with COVID-19: Cohort study // BMJ. 2022. N 376. P. e068993. doi: 10.1136/bmj-2021-068993
  59. COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic // Lancet. 2021. Vol. 398, N 10312. P. 1700-1712. doi: 10.1016/50140-6736(21)02143-7
  60. Taquet M., Sillett R., Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: An analysis of 2-year retrospective cohort studies including 1284437 patients II Lancet Psychiatry. 2022. Vol. 9, N 10. P. 815-827. doi: 10.1016/52215-0366(22)00260-7
  61. Ray S.T., Abdel-Mannan 0., Sa M., et al. Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: A prospective national cohort study // Lancet Child Adolesc Health. 2021. Vol. 5, N 9. P. 631-641. doi: 10.1016/52352-4642(21)00193-0
  62. Balcom E.F., Nath A, Power C. Acute and chronic neurological disorders in COVID-19: Potential mechanisms of disease // Brain. 2021 Dec 31. Vol. 144, N 12. P. 3576-3588. doi: 10.1093/brain/awab302
  63. Hingorani K.S., Bhadola S., Cervantes-Arslanian AM. COVID-19 and the brain // Trends Cardiovasc Med. 2022. Vol. 32, N 6. P. 323-330. doi: 10.1016/j.tcm.2022.04.004
  64. Hugon J., Msika E.F., Queneau M., et al. Long COVID: Cognitive complaints (brain fog) and dysfunction of the cingulate cortex // J Neurol. 2022. Vol. 269, N 1. P. 44-46. doi: 10.1007/s00415-021 -10655-x
  65. Tenforde M., Kim S.S., Lindsell C.J., et al.; IVY Network Investigators; CDC COVID-19 Response Team; IVY Network Investigators. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network: United States // Morb Mortal Wkly Rep. Vol. 69, N 30. P. 993-998. doi: 10.15585/mmwr.mm6930e1
  66. Lauria A, Carfl A, Benvenuto F., et al. Neuropsychological measures of Long COVID-19 fog in older subjects // Clin Geriatr Med. 2022. Vol. 38, N 3. P. 593-603. doi: 10.1016/j.cger.2022.05.003
  67. Amalakanti S., Arepalli K.V., Jillella J.P. Cognitive assessment in asymptomatic COVID-19 subjects // Virusdisease. 2021. Vol. 32, N 1. P. 146-149. doi: 10.1007/s13337-021 -00663-w
  68. Liu Y.H., Chen Y., Wang Q.H., et al. One-year trajectory of cognitive changes in older survivors of COVID-19 in Wuhan, China: A longitudinal cohort study // JAMA Neurol. 2022. Vol. 79, N 5. P. 509-517. doi: 10.1001/jamaneurol.2022.0461
  69. Taquet M., Dercon Q., Luciano S., et al. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19 // PLoS Med. 2021. Vol. 18, N 9. P. e 1003773. doi: 10.1371/journal.pmed. 1003773
  70. Taquet M., Geddes J.R., Husain M., et al. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: A retrospective cohort study using electronic health records // Lancet Psychiatry. 2021. Vol. 8, N 5. P. 416-427. doi: 10.1016/S2215-0366(21)00084-5
  71. Frontera J.A., Yang D., Lewis A., et al. A prospective study of long-term outcomes among hospitalized COVID-19 patients with and without neurological complications // J Neurol Sci. 2021. N 426. P. 117486. doi: 10.1016/j.jns.2021.117486
  72. Xiong Q., Xu M., Li J., et al. Clinical sequelae of COVID-19 survivors in Wuhan, China: A single-centre longitudinal study // Clin Microbiol Infect. 2021. Vol. 27, N 1. P. 89-95. doi: 10.1016/j.cmi.2020.09.023
  73. Meinhardt J., Radke J., Dittmayer C., et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19 // Nat Neurosci. 2021. Vol. 24, N 2. P. 168-175. doi: 10.1038/s41593-020-00758-5
  74. Solomon T. Neurological infection with SARS-CoV-2: The story so fa // Nat Rev Neurol. 2021. Vol. 17, N 2. P. 65-66. doi: 10.1038/s41582-020-00453-w
  75. Frontera J.A., Lewis A., Melmed K., et al. Prevalence and predictors of prolonged cognitive and psychological symptoms following COVID-19 in the United States // Front Aging Neurosci. N 13. P. 690383. doi: 10.3389/fnagi.2021.690383
  76. Lee M„ Perl D.P., Nair G., et al. Microvascular injury in the brains of patients with Covid-19 // N Engl J Med. 2021. Vol. 384, N 5. P. 481-483. doi: 10.1056/NEJMc2033369
  77. Yang C., Zhao H„ Tebbutt S.J. A glimpse into long COVID and symptoms // Lancet Respir Med. 2022. Vol. 10, N 9. P. e81. doi: 10.1016/S2213-2600(22)00217-X
  78. Baker A.M., Maffitt N.J., Vecchio A.D., et al. Neural dysregulation in postcovid fatigue // medRxiv. 2022. doi: 10.1 101/2022.02.18.22271040
  79. Pretorius E., Vlok M„ Venter C., et al. Persistent clotting protein pathology in Long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin // Cardiovasc Diabetol. 2021. Vol. 20, N 1. P. 172. doi: 10.1186/s12933-021-01359-7
  80. Su Y., Yuan D., Chen D.G., et al. Multiple early factors anticipate post-acute COVID-19 sequelae // Cell. 2022. Vol. 185, N 5. P. 881-895.e20. doi: 10.1016/j.cell.2022.01.014
  81. Lu Y., Li X., Geng D., et al. Cerebral micro-structural changes in COVID-19 patients: An MRI-based 3-month follow-up study // E. Clin Med. 2020. N 25. P. 100484. doi: 10.1016/j.eclinm.2020.100484
  82. Ferini-Strambi L., Salsone M. COVID-19 and neurological disorders: Are neurodegenerative or neuroimmunological diseases more vulnerable? // J Neurol. 2021. Vol. 268, N 2. P. 409-419. doi: 10.1007/S00415-020-10070-8
  83. Oaklander A.L, Mills A.J., Kelley M., et al. Peripheral neuropathy evaluations of patients with prolonged long COVID // Neurol Neuroimmunol Neuroinflamm. 2022. Vol. 9, N 3. P. e1146. doi: 10.1212/NXI.0000000000001146
  84. Bocci T., Campiglio L, Zardoni M., et al. Critical illness neuropathy in severe COVID-19: A case series // Neurol Sci. 2021. Vol. 42, N 12. P. 4893-4898. doi: 10.1007/s10072-021-05471-0
  85. Song E., Bartley C.M., Chow R.D., et al. Divergent and self- reactive immune responses in the CNS of COVID-19 patients with neurological symptom // Cell Rep Med. 2021. Vol. 2, N 5. P. 100288. doi: 10.1016/j.xcrm.2021.100288
  86. Estiri H„ Strasser Z.H., Brat G.A., et al.; Consortium for Characterization of COVID-19 by EHR (4CE). Evolving phenotypes of non-hospitalized patients that indicate long COVID // BMC Med. Vol. 19, N 1. P. 249. doi: 10.1186/s12916-021-02115-0
  87. Mehandru S., Merad M. Pathological sequelae of long- haul COVID// Nat Immunol. 2022. Vol. 23, N 2. P. 194-202. doi: 10.1038/s41590-021-01104-y
  88. Hoertel N. Do the selective serotonin reuptake inhibitor antidepressants fluoxetine and fluvoxamine reduce mortality among patients with COVID-19? // JAMA Netw Open. 2021. Vol. 4, N 11. P. e2136510—e2136510. doi: 10.1001/jamanetworkopen.2021.36510
  89. Davis H.E., Assaf G.S., McCorkell L., et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact // E. Clin Med. 2021. N 38. P. 101019. doi: 10.1016/j.eclinm.2021.101019
  90. Gonzalez-Hermosillo J.A., Martinez-Lopez J.P., Carrillo- Lampon S.A., et al. Post-acute COVID-19 symptoms, a potential link with myalgic encephalomyelitis/chronic fatigue syndrome: A 6-month survey in a Mexican cohort // Brain Sci. 2021. Vol. 11, N 6. P. 760. doi: 10.3390/brainsci11060760
  91. Jason L.A., Islam M.F., Conroy K., et al. COVID-19 symptoms over time: Comparing long-haulers to ME/CFS // Fatigue Biomed Health Behav. 2021. Vol. 9, N 2. P. 59-68. doi: 10.1080/21641846.2021.1922140
  92. Wostyn P. COVID-19 and chronic fatigue syndrome: Is the worst yet to come? // Med Hypotheses. 2021. N 146. P. 110469. doi: 10.1016/j.mehy.2020.110469
  93. Yang C.P., Chang C.M., Yang C.C., et al. Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19 // Brain Behav Immun. N 103. P. 19-27. doi: 10.1016/j.bbi.2022.04.001
  94. Douaud G., Lee S., Alfaro-Almagro F., et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank // Nature. Vol. 604, N 7907. P. 697-707. doi: 10.1038/s41586-022-04569-5
  95. Al-Aly Z., Bowe B., Xie Y. Long covid after breakthrough COVID-19: The post-acute sequelae of breakthrough COVID-19 // Nat Med. Vol. 28, N 7. P. 1461-1467. doi: 10.1038/s41591-022-01840-0
  96. Chand S., Kapoor S., Naqvi A., et al. Long-term follow up of renal and other acute organ failure in survivors of critical illness due to Covid-19 // J Intensive Care Med. 2022. Vol. 37, N 6. P. 736-742. doi: 10.1 177/0885066621 1062582
  97. Copur S., Berkkan M., Basile C., et al. Post-acute COVID-19 syndrome and kidney diseases: What do we know? // J Nephrol. Vol. 35, N 3. P. 795-805. doi: 10.1007/s40620-022-01296-y
  98. Yende S., Chirag P.R. Long COVID and kidney disease // Nat Rev Nephrol. 2021. Vol. 17, N 12. P. 792-793. doi: 10.1038/s41581-021-00487-3
  99. Chan L, Chaudhary K„ Saha A., et al. AKI in hospitalized patients with COVID-19 // J Am Soc Nephrol. 2021. Vol. 32, N 1. P. 151-160. doi: 10.1681/ASN.2020050615
  100. Huang Q., Wu X., Zheng X., et al. Targeting inflammation and cytokine storm in COVID-19 // Pharmacol Res. 2020. N 159. P. 105051. doi: 10.1016/j.phrs.2020.105051
  101. Nalbandian A., Sehgal K„ Gupta A., et al. Post-acute COVID-19 syndrome // Nat Med. 2021. Vol. 27, N 4. P. 601-615. doi: 10.1038/s41591-021-01283-z
  102. Bowe B., Xie Y., Xu E., Al-Aly Z. Kidney outcomes in long COVID II J. Am Soc Nephrol. 2021. Vol. 32, N 11. P. 2851-2862. doi: 10.1681/ASN.2021060734
  103. Chiang K.C., Imig J.D., Kalantar-Zadeh K., Gupta A. Kidney in the net of acute and long-haul coronavirus disease 2019: A potential role for lipid mediators in causing renal injury and fibrosis // Curr Opin Nephrol Hypertens. 2022. Vol. 31, N 1. P. 36-46. doi: 10.1097/MNH.0000000000000750
  104. Munblit D., Nicholson T., Akrami A., et al. A core outcome set for post-COVID-19 condition in adults for use in clinical practice and research: An international Delphi consensus study // Lancet Respir Med. 2022. Vol. 10, N 7. P. 715-724. doi: 10.1016/S2213-2600(22)00169-2.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».