Organ-specific manifestations of "long COVID"
- 作者: Sсherbak S.G.1,2, Vologzhanin D.A.1,2, Kamilova T.A.1, Golota A.S.1, Makarenko S.V.1,2, Sarana A.M.2,3
-
隶属关系:
- Saint-Petersburg City Hospital № 40 of Kurortny District
- Saint-Petersburg State University
- Health Committee of Saint Petersburg
- 期: 卷 5, 编号 2 (2023)
- 页面: 120-140
- 栏目: REVIEWS
- URL: https://bakhtiniada.ru/2658-6843/article/view/132876
- DOI: https://doi.org/10.36425/rehab352505
- ID: 132876
如何引用文章
全文:
详细
The COVID-19 pandemic has severely affected the healthcare system across the globe and caused significant morbidity and mortality. The occurrence and importance of the post-COVID-19 sequelae was realized when a sizable proportion of patients appeared to continue suffering from various symptoms for many months and years after having recovered from the acute phase of infection. These complications were observed in multiple organ systems and not only in the respiratory tract. Multidisciplinary efforts are required to manage these patients as the complications are variable in terms of location and severity.
The post COVID-19 condition (long COVID) represents a number of different post-viral syndromes that require an appropriate classification. Collection of a large amount of data is required for all the physical and neuropsychiatric symptoms that persist for more than 12 weeks without an alternative explanation. The process of data collection and analysis should be controlled for all confounding factors including the consequences of intensive care hospitalization, social isolation, and other effects.
The current absence of the effective treatment reflects the unclear causes of the post COVID-19 conditions which cannot be targeted properly until their mechanism is established. Timely collection of data and identification of physiological mechanisms underlying the long-term clinical manifestations of C0VID-19 are vital for the relevant design of effective therapies.
作者简介
Sergey Sсherbak
Saint-Petersburg City Hospital № 40 of Kurortny District; Saint-Petersburg State University
Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN 代码: 1537-9822
MD, Dr. Sci. (Med.), Professor
俄罗斯联邦, 9B Borisova street, Sestroretsk, 197706 Saint Petersburg; Saint PetersburDmitry Vologzhanin
Saint-Petersburg City Hospital № 40 of Kurortny District; Saint-Petersburg State University
Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN 代码: 7922-7302
MD, Dr. Sci. (Med.)
俄罗斯联邦, 9B Borisova street, Sestroretsk, 197706 Saint Petersburg; Saint PetersburTatyana Kamilova
Saint-Petersburg City Hospital № 40 of Kurortny District
Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN 代码: 2922-4404
Cand. Sci. (Biol.)
俄罗斯联邦, 9B Borisova street, Sestroretsk, 197706 Saint PetersburgAleksandr Golota
Saint-Petersburg City Hospital № 40 of Kurortny District
编辑信件的主要联系方式.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN 代码: 7234-7870
MD, Cand. Sci. (Med.), Associate Professor
俄罗斯联邦, 9B Borisova street, Sestroretsk, 197706 Saint PetersburgStanislav Makarenko
Saint-Petersburg City Hospital № 40 of Kurortny District; Saint-Petersburg State University
Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN 代码: 8114-3984
assistant
俄罗斯联邦, 9B Borisova street, Sestroretsk, 197706 Saint Petersburg; Saint PetersburAndrey Sarana
Saint-Petersburg State University; Health Committee of Saint Petersburg
Email: asarana@mail.ru
ORCID iD: 0000-0003-3198-8990
SPIN 代码: 7922-2751
MD, Cand. Sci. (Med.), Associate Professor
俄罗斯联邦, Saint Petersburg; Saint Petersburg参考
- Lambert N, Corps S, El-Azab S.A., et al. The other COVID-19 survivors: Timing, duration, and health impact of post-acute sequelae of SARS-CoV-2 infection. J Clin Nurs. 2022:10.1 1 1 1/jocn. 16541. doi: 10.111 Vjocn.16541
- Visser D, Golla S.S., Verfaillie SC, et al. Long COVID is associated with extensive in-vivo neuroinflammation on [18F]DPA-714 PET. medRxiv. 2022. Preprint. doi: 10.1 101/2022.06.02.22275916
- Proal A.D., Van Elzakker MB. Long COVID or post-acute sequelae of COVID-19 (PASC): An overview of biological factors that may contribute to persistent symptoms. Front Microbiol. 2021; (12):698169. doi: 10.3389/fmicb.2021.698169
- Higgins V., Sohaei D., Diamandis E.P., Prassas I. COVID-19: From an acute to chronic disease? Potential long-term health consequences. Crit Rev Clin Lab Sci. 2021 ;58(5):297—310. doi: 10.1080/10408363.2020.1860895
- Finney L.J., Doughty R., Lovage S, et al. Lung function deficits and symptom burden in survivors of COVID-19 requiring mechanical ventilation. Ann Am Thorac Soc. 2021 ;18(10): 1740—1743. doi: 10.1513/AnnalsATS.202102-099RL
- Zhao Y.M., Shang Y.M., Song W.B., et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. E. Clin Med. 2020;(25):100463. doi: 10.1016/j.eclinm.2020.100463
- Arnold D.T., Hamilton FW, Milne A., et al. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: Results from a prospective UK cohort. Thorax. 2021 ;76(4):399—401. doi: 10.1136/thoraxjnl-2020-216086
- Vijayakumar B., Tonkin J., Devaraj A., et al. CT lung abnormalities after COVID-19 at 3 months and 1 year after hospital discharge. Radiology. 2022;303(2):444-454. doi: 10.1148/radiol.2021211746
- Mandal S., Barnett J., Brill S.E., et al. "Long-COVID": A cross- sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax. 202176(4)396—398. doi: 10.1136/thoraxjnl-2020-215818
- Wu X., Liu X., Zhou Y., et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19- related hospitalisation: A prospective study. Lancet Respir Med. 2021:9(7)747-754. doi: 10.1016/S2213-2600(21)00174-0
- Van Gassel R.J., Bels J.L., Raafs A., et al. High prevalence of pulmonary sequelae at 3 months after hospital discharge in mechanically ventilated survivors of COVID-19. Am J. Respir Crit Care Med. 2021:203(3)371-374. doi: 10.1164/rccm.202010-3823LE
- Xu J., Xu X., Jiang L., et al. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res. 2020;21 (1 ):182. doi: 10.1186/s 12931-020-01445-6
- Wells A.U., Devaraj A., Desai S.R.. Interstitial lung disease after COVID-19 infection: A catalog of uncertainties. Radiology. 2021 ;299(1 ):E216—E218. doi: 10.1148/radiol.2021204482
- Whitaker M., Elliott J., Chadeau-Hyam M., et al. Persistent symptoms following SARS-CoV-2 infection in a random community sample of 508,707 people. medRxiv. 2021; 18(9): 1 —40. doi: 10.1 101/2021.06.28.21259452
- Havervall S., Rosell A., Phillipson M., et al. Symptoms and functional impairment assessed 8 months after mild COVID-19 among health care workers. JAMA. 2021325(19):2015—2016. doi: 10.1001/jama.2021.5612
- Huang L., Yao Q., Gu X., et al. 1-year outcomes in hospital survivors with COVID-19: A longitudinal cohort study. Lancet. 2021398(10302)747-758. doi: 10.1016/S0140-6736(21)01755-4
- Davis H.E., Assaf G.S., McCorkell L., et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. E. Clin Med. 2021:(38):101019.doi: 10.1016/j.eclinm.2021.101019
- Puntmann V.O., Carerj M.L., Wieters I., et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020;5(11 ):1265-1273. doi: 10.1001/jamacardio.2020.3557
- Xie Y., Xu E., Bowe B., Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583—590. doi: 10.1038/s41591-022-01689-3
- Chung M.K., Zidar D.A., Bristow M.R., et al. COVID-19 and cardiovascular disease: From bench to bedside. Circ Res. 2021:128(8):1214-1236. doi: 10.1161/CIRCRESAHA. 121317997
- Delorey T.M., Ziegler C.G., Heimberg G., et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021 ;595(7865): 107—113. doi: 10.1038/s41586-021-03570-8
- Gluckman T.J., Bhave N.M., Allen L.A., et al. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: Myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 202279(17): 1717—1756. doi: 10.1016/j.jacc.2022.02.003
- Rezel-Potts E., Douiri AB, Sun X, et al. Cardiometabolic outcomes up to 12 months after COVID-19 infection. A matched cohort study in the UK. PLoS Med. 2022;19(7):e1004052. doi: 10.1371/journaLpmed.1004052
- Rajpal S., Tong M.S., Borchers J., et al. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection. JAMA Cardiol. 2021;6(1):116-118.doi: 10.1001/jamacardio.2020.4916
- Singh I., Joseph P., Heerdt P.M., et al. Persistent exertional intolerance after COVID-19: Insights from invasive cardiopulmonary exercise testing. Chest. 2022;161(1):54—63. doi: 10.1016/j.chest.2021.08.010
- Stahlberg M., Reistam U., Fedorowski A., et al. Post-COVID-19 tachycardia syndrome: A distinct phenotype of post-acute COVID-19 syndrome. Am J. Med. 2021;134(12):1451—1456. doi: 10.1016/j.amjmed.2021.07.004
- Aparisi A., Ybarra-Falcon C., Garcia-Gomez M., et al. Exercise ventilatory inefficiency in post-COVID-19 syndrome: Insights from a prospective evaluation. J Clin Med. 2021;10(12):2591. doi: 10.3390/jcm10122591
- Mancini D.M., Brunjes D.L., Lala A., et al. Use of cardiopulmonary stress testing for patients with unexplained dyspnea postcoronavirus disease. J Am Coll Cardiol. 2021;9(12):927—937. doi: 10.1016/j.jchf.2021.10.002
- Espejo C., Mejia-Renteria H., Travieso A., et al. Myocardial ischaemia of non-obstructive origin as a cause of new onset anginal chest pain in the long COVID syndrome. Eur Heart J. 2021;42(Suppl 1): ehab724—1078. doi: 10.1093/eurheartj/ehab724.1078
- Rinaldo R.F., Mondoni M., Parazzini E.M., et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. EarRespir J. 2021;58(2):2100870. doi: 10.1 183/13993003.00870-2021
- Singh I, Joseph P, Heerdt PM, et al. Persistent exertional intolerance after COVID-19: Insights from invasive cardiopulmonary exercise testing. Chest. 2022;161(1):54—63. doi: 10.1016/j.chest.2021.08.010
- Blomberg B, Mohn KG, Brokstad KA, et al. Bergen COVID-19 Research Group. Long COVID in a prospective cohort of home-isolated patients. Nat Med. 2021;27(9):1607—1613.doi: 10.1038/S41591-021-01433-3
- Raj S.R., Arnold A.C., Barboi A., et al. Long-COVID postural tachycardia syndrome: An American Autonomic Society statement. Clin Auton Res. 2021;31(3):365—368.doi: 10.1007/S10286-021-00798-2
- Mahmoud Z., East L., Gleva M., et al. Cardiovascular symptom phenotypes of post-acute sequelae of SARS-CoV-2. Int J Cardiol. 2022;(366):35—41. doi: 10.1016/j.ijcard.2022.07.018
- Peluso M.J., Lu S., Tang A.F., et al. Markers of immune activation and inflammation in individuals with postacute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 infection. J Infect Dis. 2021;224(11 ):1839-1848. doi: 10.1093/infdis/jiab490
- Wang E.Y., Mao T., Klein J., et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021 ;595(7866):283-288. doi: 10.1038/s41586-021-03631-y
- Visvabharathy L., Hanson B., Orban Z., et al. Neuro-COVID long- haulers exhibit broad dysfunction in T cell memory generation and responses to vaccination. medRxiv. 2021;2021:1-48. doi: 10.1101/2021.08.08.21261763
- Gold J.E., Okyay R.A., Licht W.E., Hurley D.J.. Investigation of long COVID prevalence and its relationship to Epstein-Barr virus reactivation. Pathogens. 2021;10(6):763. doi: 10.3390/pathogens10060763
- Charfeddine S., Amor H, Jdidi J., et al. Long COVID 19 syndrome: Is it related to microcirculation and endothelial dysfunction? Insights from TUN-EndCOV Study. Front Cardiovasc Med. 2021 ;(8):745758. doi: 10.3389/fcvm.2021.745758
- Baratto C., Caravita S., Faini A., et al. Impact of COVID-19 on exercise pathophysiology: A combined cardiopulmonary and echocardiographic exercise study. J Appl Physiol. 2021;130(5): 1470-1478. doi: 10.1152/japplphysiol.00710.2020
- Clavario P., De Marzo V., Lotti R., et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int J Cardiol. 2021;(340):113-118. doi: 10.1016/j.ijcard.2021.07.033
- Sukocheva O.A., Maksoud R., Beeraka N.M., et al. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/ chronic fatigue syndrome. J Adv Res. 2022;(40): 179—196. doi: 10.1016/j.jare.2021.1 1.013
- Dani M., Dirksen A., Taraborrelli P., et al. Autonomic dysfunction in “long COVID": Rationale, physiology and management strategies. Clin Med (Land). 2021;21(1):e63-e67. doi: 10.7861/clinmed.2020-0896
- Becker R.C. COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis. 2020;50(3):499—51 1. doi: 10.1007/s1 1239-020-02230-4
- Wang S.Y., Adejumo P., See C., et al. Characteristics of patients referred to a cardiovascular disease clinic for post-acute sequelae of SARS-CoV-2 infection. Am Heart J Plus. 2022;(18):100176.doi: 10.1016/j.ahjo.2022.100176
- Frontera J.A., Simon N.M. Bridging knowledge gaps in the diagnosis and management of neuropsychiatric sequelae of COVID-19. JAMA Psychiatry. 2022;79(8):811-817. doi:jamapsychiatry.2022.1616
- Oran DP, Topol E.J. The proportion of SARS-CoV-2 infections that are asymptomatic. Ann Intern Med. 2021;174(9):1344-1345. doi: 10.1001/jamapsychiatry.2022.1616
- Frontera J.A., Sabadia S., Lalchan R., et al. A prospective study of neurologic disorders in hospitalized patients with COVID-19 in New York City. Neurology. 2021;96(4):e575—e586. doi: 10.1212/WNL.0000000000010979
- Misra S., Kolappa K., Prasad M., et al. Frequency of neurologic manifestations in COVID-19: A systematic review and meta-analysis. Neurology. 2021;97(23):e2269—e2281.doi: 10.1212/WNL.0000000000012930
- Deng J, Zhou F., Hou W., et al. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: A meta-analysis. Ann N. Y. AcadSci. 2021; 1486(1 ):90-111.doi: 10.1111/nyas.14506
- Krishnamoorthy Y., Nagarajan R., Saya G.K., Menon V. Prevalence of psychological morbidities among general population, healthcare workers and COVID-19 patients amidst the COVID-19 pandemic: A systematic review and meta-analysis. Psychiatry Res. 2020;(293): 1 13382. doi: 10.1016/j.psychres.2020.113382
- Taquet M., Luciano S., Geddes J.R., et al. Bidirectional associations between COVID-19 and psychiatric disorder: Retrospective cohort studies of 62354 COVID-19 cases in the USA. Lancet Psychiatry. 2021 ;8(2): 130-140. doi: 10.1016/52215-0366(20)30462-4
- Taquet M., Geddes J.R., Husain M., et al. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416-427. doi: 10.1016/52215-0366(21)00084-5
- Vai B, Mazza MG, Colli C, et al. Mental disorders and risk of COVID-19-related mortality, hospitalisation, and intensive care unit admission: A systematic review and meta-analysis. Lancet Psychiatry. 2021;8(9)797-812. doi: 10.1016/S2215-0366(21 )00232-7
- Frontera J.A., Yang D., Lewis A., et al. A prospective study of longterm outcomes among hospitalized COVID-19 patients with and without neurological complications. J Neurol Sci. 2021;(426):117486. doi: 10.1016/j.jns.2021.117486
- Frontera J.A., Boutajangout A., Masurkar A.V., et at. Comparison of serum neurodegenerative biomarkers among hospitalized COVID-19 patients versus non-COVID subjects with normal cognition, mild cognitive impairment, or Alzheimer's dementia. Alzheimers Dement. 2022; 18(5):899—910. doi: 10.1002/alz.12556
- Mazza M.G., Palladini M., De Lorenzo R., et al.; COVID-19 BioB Outpatient Clinic Study group. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun. 2021 ;(94):138-147. do: 10.1016/j.bbi.2021.02.021
- Xie Y., Xu E., Al-Aly Z. Risks of mental health outcomes in people with COVID-19: Cohort study. BMJ. 2022;(376):e068993. doi: 10.1136/bmj-2021-068993
- COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021 ;398(10312):1700-1712. doi: 10.1016/S0140-6736(21 )02143-7
- Taquet M., Sillett R., Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1,284,437 patients. Lancet Psychiatry. 2022;9(10):815-827. doi: 10.1016/52215-0366(22)00260-7
- Ray S.T., Abdel-Mannan 0., Sa M, et al. Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: A prospective national cohort study. Lancet Child Adolesc Health. 2021 ;5(9):631-641. doi: 10.1016/52352-4642(21)00193-0
- Balcom E.F., Nath A., Power C. Acute and chronic neurological disorders in COVID-19: Potential mechanisms of disease. Brain. 2021;144(12):3576-3588. doi: 10.1093/brain/awab302
- Hingorani K.S., Bhadola S., Cervantes-Arslanian A.M. COVID-19 and the brain. Trends Cardiovasc Med. 2022;32(6):323—330. doi: 10.1016/j.tcm.2022.04.004
- Hugon J., Msika E.F., Queneau M., et al. Long COVID: cognitive complaints (brain fog) and dysfunction of the cingulate cortex. J Neurol. 2022:269(1):44-46. doi: 10.1007/s00415-021 -10655-x
- Tenforde M., Kim S.S., Lindsell C.J., et al.; IVY Network Investigators; CDC COVID-19 Response Team; IVY Network Investigators. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network: United States. Morb Mortal Wkly Rep. 2020;69(30):993-998. doi: 10.15585/mmwr.mm6930e1
- Lauria A., Carfi A., Benvenuto F., et al. Neuropsychological measures of long COVID-19 fog in older subjects. Clin Geriatr Med. 2022;38(3):593-603. doi: 10.1016/j.cger.2022.05.003
- Amalakanti S., Arepalli K.V., Jillella J.P.. Cognitive assessment in asymptomatic COVID-19 subjects. Virusdisease. 2021;32(1):146—149. doi: 10.1007/s13337-021-00663-w
- Liu Y.H, Chen Y., Wang Q.H., et al. One-year trajectory of cognitive changes in older survivors of COVID-19 in Wuhan, China: A longitudinal cohort study. JAMA Neurol. 2022;79(5):509—517. doi: 10.1001/jamaneurol.2022.0461
- Taquet M., Dercon Q., Luciano 5, et al. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 2021; 18(9):e1003773.doi: 10.1371/journal.pmed. 1003773
- Taquet M, Geddes J.R., Husain M., et al. 6-month neurological and psychiatric outcomes in 236,379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry. 2021 ;8(5):416-427. doi: 10.1016/52215-0366(21)00084-5
- Frontera J.A., Yang D, Lewis A., et al. A prospective study of longterm outcomes among hospitalized COVID-19 patients with and without neurological complications // J Neurol Sci. 2021;(426):117486. doi: 10.1016/j.jns.2021.117486
- Xiong Q., Xu M., Li J., et al. Clinical sequelae of COVID-19 survivors in Wuhan, China: A single-centre longitudinal study. Clin Microbiol Infect. 2021;27(1):89-95. doi: 10.1016/j.cmi.2020.09.023
- Meinhardt J., Radke J., Dittmayer C., et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168—175. doi: 10.1038/S41593-020-00758-5
- Solomon T. Neurological infection with SARS-CoV-2: The story so far. Nat Rev Neurol. 2021;17(2):65—66. doi: 10.1038/s41582-020-00453-w
- Frontera J.A., Lewis A., Melmed K., et al. Prevalence and predictors of prolonged cognitive and psychological symptoms following COVID-19 in the United States. Front Aging Neurosci. 2021;(13):690383. doi: 10.3389/fnagi.2021.690383
- Lee M., Perl DP, Nair G., et al. Microvascular injury in the brains of patients with Covid-19. // Engl J Med. 2021;384(5):481—483. doi: 10.1056/NEJMc2033369
- Yang C., Zhao H., Tebbutt S.J. A glimpse into long COVID and symptoms. Lancet Respir Med. 2022;10(9):e81. doi: 10.1016/S2213-2600(22)00217-X
- Baker A.M., Maffitt N.J, Vecchio A.D., et al. Neural dysregulation in postcovid fatigue. medRxiv. 2022. doi: 10.1 101/2022.02.18.22271040
- Pretorius E., Vlok M., Venter C., et al. Persistent clotting protein pathology in Long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin // Cardiovasc Diabetol. 2021;20(1 ):172. doi: 10.1186/s12933-021-01359-7
- Su Y., Yuan D., Chen D.G., et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022; 185(5):881—895.e20. doi: 10.1016/j.cell.2022.01.014
- Lu Y., Li X., Geng D., et al. Cerebral micro-structural changes in COVID-19 patients: An MRI-based 3-month follow-up study. E Clin Med. 2020;(25): 100484. doi: 10.1016/j.eclinm.2020.100484
- Ferini-Strambi L., Salsone M. COVID-19 and neurological disorders: Are neurodegenerative or neuroimmunological diseases more vulnerable? J Neurol. 2021 ;268(2):409—419. doi: 10.1007/S00415-020-10070-8
- Oaklander A.L., Mills A.J., Kelley M., et al. Peripheral neuropathy evaluations of patients with prolonged long COVID. Neurol Neuroimmunol Neuroinflamm. 2022;9(3):e1146. doi: 10.1212/NXI.0000000000001146
- Bocci T., Campiglio L., Zardoni M., et al. Critical illness neuropathy in severe COVID-19: A case series. Neurol Sci. 2021;42(12): 4893-4898. doi: 10.1007/s10072-021-05471-0
- Song E., Bartley C.M., Chow R.D., et al. Divergent and self- reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep Med. 2021;2(5):100288. doi: 10.1016/j.xcrm.2021.100288
- Estiri H., Strasser Z.H., Brat G.A., et al.; Consortium for Characterization of COVID-19 by EHR (4CE). Evolving phenotypes of non-hospitalized patients that indicate long COVID. BMC Med. 2021;19(1):249. doi: 10.1186/s12916-021-02115-0
- Mehandru S., Merad M. Pathological sequelae of long-haul COVID. Nat Immunol. 2022;23(2):194-202. doi: 10.1038/s41590-021-01104-y
- Hoertel N. Do the selective serotonin reuptake inhibitor antidepressants fluoxetine and fluvoxamine reduce mortality among patients with COVID-19? JAMA Netw Open. 2021;4(11): e2136510—e2136510. doi: 10.1001/jamanetworkopen.2021.36510
- Davis H.E., Assaf G.S., McCorkell L., et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. E Clin Med. 2021;(38):101019. doi: 10.1016/j.eclinm.2021.101019
- Gonzalez-Hermosillo J.A., Martinez-Lopez J.P., Carrillo- Lampon SA, et al. Post-acute COVID-19 symptoms, a potential link with myalgic encephalomyelitis/chronic fatigue syndrome: A 6-month survey in a Mexican cohort. Brain Sci. 2021;11(6):760. doi: 10.3390/brainsci 11060760
- Jason LA, Islam MF, Conroy K, et al. COVID-19 symptoms over time: Comparing long-haulers to ME/CFS. Fatigue: Biomed Health Behav. 2021 ;9(2):59-68. doi: 10.1080/21641846.2021.1922140
- Wostyn P. COVID-19 and chronic fatigue syndrome: Is the worst yet to come? Med Hypotheses. 2021;(146):110469. doi: 10.1016/j.mehy.2020.1 10469
- Yang C.P., Chang C.M., Yang C.C., et al. Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19. Brain Behav Immun. 2022;(103):19-27. doi: 10.1016/j.bbi.2022.04.001
- Douaud G., Lee S., Alfaro-Almagro F., et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022;604(7907):697-707. doi: 10.1038/s41586-022-04569-5
- Al-Aly Z., Bowe B., Xie Y. Long covid after breakthrough COVID-19: The post-acute sequelae of breakthrough COVID-19. Nat Med. 2022;28(7):1461-1467. doi: 10.1038/s41591-022-01840-0
- Chand S., Kapoor S., Naqvi A., et al. Long-term follow up of renal and other acute organ failure in survivors of critical illness due to Covid-19. J Intensive Care Med. 2022:37(6)736-742. doi: 10.1 177/0885066621 1062582
- Copur S., Berkkan M., Basile C., et al. Post-acute COVID-19 syndrome and kidney diseases: What do we know? J Nephrol. 2022:35(3)795-805. doi: 10.1007/s40620-022-01296-y
- Yende S., Chirag P.R.. Long COVID and kidney disease. Nat Rev Nephrol. 2021;17(12)792-793. doi: 10.1038/s41581 -021 -00487-3
- Chan L., Chaudhary K., Saha A., et al. AKI in hospitalized patients with COVID-19. J Am Soc Nephrol. 2021;32(1):151—160. doi: 10.1681/ASN.2020050615
- Huang Q., Wu X., Zheng X., et al. Targeting inflammation and cytokine storm in COVID-19. Pharmacol Res. 2020;(159):105051. doi: 10.1016/j.phrs.2020.105051
- Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601-615. doi: 10.1038/s41591 -021-01283-z
- Bowe B., Xie Y., Xu E., Al-Aly Z. Kidney outcomes in long COVID. J Am Soc Nephrol. 2021:32(11):2851-2862. doi: 10.1681/ASN.2021060734
- Chiang К.С., Imig J.D., Kalantar-Zadeh K., Gupta A. Kidney in the net of acute and long-haul coronavirus disease 2019: A potential role for lipid mediators in causing renal injury and fibrosis. Curr Opin Nephrol Hypertens. 2022;31(1 ):36-46. doi: 10.1097/MNH.0000000000000750
- Munblit D, Nicholson T., Akrami A., et al. A core outcome set for post-COVID-19 condition in adults for use in clinical practice and research: An international Delphi consensus study. Lancet Respir Med. 2022:10(7)715-724. doi: 10.1016/S2213-2600(22)00169-2.
补充文件
