Analysis of the stochastic model “prey-migration area-predator-superpredator”
- Авторлар: Vasilyeva I.I.1, Druzhinina O.V.2, Masina O.N.1, Demidova A.V.3
-
Мекемелер:
- Bunin Yelets State University
- Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
- RUDN University
- Шығарылым: Том 33, № 3 (2025)
- Беттер: 272-283
- Бөлім: Modeling and Simulation
- URL: https://bakhtiniada.ru/2658-4670/article/view/348822
- DOI: https://doi.org/10.22363/2658-4670-2025-33-3-272-283
- EDN: https://elibrary.ru/HEOQDK
- ID: 348822
Дәйексөз келтіру
Толық мәтін
Аннотация
Current research areas of dynamic migration and population models include the analysis of trajectory dynamics and solving parametric optimization problems using computer methods. In this paper we consider the population model “prey-migration area-predator-superpredator”, which is given by a system of four differential equations. The model takes into account trophic interactions, intraspecific and interspecific competition, as well as migration of the prey to the refuge. Using differential evolution parameters are found that ensure the coexistence of populations of prey, predator and superpredator, respectively, in the main habitat and the existence of a population of prey in a refuge. The transition to stochastic variants of the model based on additive noise, multiplicative noise and the method of constructing self-consistent models is performed. To describe the structure of the stochastic model the Fokker-Planck equations are used and a transition to a system of equations in the Langevin form is performed. Numerical solution of stochastic systems of differential equations is implemented by the Euler-Maruyama method. Computer experiments are conducted using a Python software package, and trajectories for deterministic and stochastic cases are constructed. A comparative analysis of deterministic model and corresponding stochastic models is carried out. The results can be used in solving problems of mathematical modeling of biological, ecological, physical, chemical and demographic processes.
Авторлар туралы
Irina Vasilyeva
Bunin Yelets State University
Хат алмасуға жауапты Автор.
Email: irinavsl@yandex.ru
ORCID iD: 0000-0002-4120-2595
Assistant professor of Department of Mathematical Modeling, Computer Technologies and Information Security
28 Kommunarov St, Yelets, 399770, Russian FederationOlga Druzhinina
Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
Email: ovdruzh@mail.ru
ORCID iD: 0000-0002-9242-9730
Doctor of Physical and Mathematical Sciences, Chief Researcher
44 building 2 Vavilov St, Moscow, 119333, Russian FederationOlga Masina
Bunin Yelets State University
Email: olga121@inbox.ru
ORCID iD: 0000-0002-0934-7217
Doctor of Physical and Mathematical Sciences, Professor of Department of Mathematical Modeling, Computer Technologies and Information Security
28 Kommunarov St, Yelets, 399770, Russian FederationAnastasia Demidova
RUDN University
Email: demidova-av@rudn.ru
ORCID iD: 0000-0003-1000-9650
Candidate of Physical and Mathematical Sciences, Associate Professor of Department of Probability Theory and Cyber Security
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationӘдебиет тізімі
- Parshad, R. D., Wickramasooriya, S., Antwi-Fordjour, K. & Banerjee, A. Additional Food Causes Predators to Explode - Unless the Predators Compete. International Journal of Bifurcation and Chaos 33, 2350034. doi: 10.1142/S0218127423500347 (2023).
- Huang, X., Chen, L., Xia, Y. & Chen, F. Dynamical Analysis of a Predator-Prey Model with Additive Allee Effect and Migration. International Journal of Bifurcation and Chaos 33, 2350179. doi: 10.1142/S0218127423501791 (2023).
- Lagui, T., Traore, S. & Dosso, M. On Models of Population Evolution of Three Interacting Species. International Journal of Applied Mathematics, Computational Science and Systems Engineering 6, 193-223. doi: 10.37394/232026.2024.6.17 (2024).
- Almasri, A. & Tsybulin, V. G. A dynamic analysis of a prey-predator-superpredator system: a family of equilibria and its destruction. Russian. Computer Research and Modeling 15. in Russian, 1601-1615. doi: 10.37394/232026.2024.6.17 (2023).
- Al Noufaey, K. S. Stability Analysis of a Diffusive Three-Species Ecological System with Time Delays. Symmetry 13. doi: 10.3390/sym13112217 (2021).
- Feng,W., Rock, B. & Hinson, J. On a new model of two-patch predator-prey system with migration of both species. The Journal of Applied Analysis and Computation 1, 193-203. doi: 10.11948/2011013 (2011).
- Saha, T. & Chakrabarti, C. Stochastic analysis of prey-predator model with stage structure for prey. Journal of Applied Mathematics and Computing 35, 195-209. doi: 10.1007/s12190-009-0351-5 (2011).
- Maiti, A., Sen, P. & Samanta, G. Deterministic and stochastic analysis of a prey-predator model with herd behaviour in both. Systems Science & Control Engineering 4, 259-269. doi:10.1080/ 21642583.2016.1241194 (Oct. 2016).
- Vasilyeva, I. I., Demidova, A. V., Druzhinina, O. V. & Masina, O. N. Construction, stochastization and computer study of dynamic population models “two competitors-two migration areas”. Discrete and Continuous Models and Applied Computational Science 31, 27-45. doi: 10.22363/26584670-2023-31-1-27-45 (2023).
- Vasilyeva, I. I., Demidova, A. V., Druzhinina, O. V. & Masina, O. N. Computer research of deterministic and stochastic models “two competitors-two migration areas” taking into account the variability of parameters. Discrete and Continuous Models and Applied Computational Science 32, 61-73. doi: 10.22363/2658-4670-2024-32-1-61-73 (2024).
- Demidova, A. V. Equations of Population Dynamics in the Form of Stochastic Differential Equations. Russian. RUDN Journal of Mathematics, Information Sciences and Physics 1. in Russian, 67-76 (2013).
- Gevorkyan, M. N., Velieva, T. R., Korolkova, A. V., Kulyabov, D. S. & Sevastyanov, L. A. Stochastic Runge-Kutta Software Package for Stochastic Differential Equations in Dependability Engineering and Complex Systems (eds Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T. & Kacprzyk, J.) (Springer International Publishing, Cham, 2016), 169-179. doi: 10.1007/978-3-319-39639-2_15.
- Korolkova, A. & Kulyabov, D. One-step Stochastization Methods for Open Systems. EPJ Web of Conferences 226, 02014. doi: 10.1051/epjconf/202022602014 (2020).
- Gardiner, C. W. Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences (Springer, Heidelberg, 1985).
- Van Kampen, N. G. Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1992).
- Gevorkyan, M., Demidova, A., Velieva, T., Korolkova, A., Kulyabov, D. & Sevastyanov, L. Implementing a Method for Stochastization of One-Step Processes in a Computer Algebra System. Programming and Computer Software 44, 86-93. doi: 10.1134/S0361768818020044 (Mar. 2018).
- Karpenko, A. P. Modern Search Engine Optimization Algorithms. Algorithms Inspired by Nature 2nd ed. Russian. in Russian (N.E. Bauman MSTU, Moscow, 2016).
- Price, K. V., Storn, R. & Lampinen, J. Differential evolution: A Practical Approach to Global Optimization (Springer, Berlin, Heidelberg, 2014).
- Druzhinina, O. V., Masina, O. N. & Vasilyeva, I. I. Differential Evolution in Problems Optimal Parameters Search for Population-Migration Models. Russian. Modern Information Technologies and IT-Education 20. in Russian, 58-69. doi: 10.25559/SITITO.020.202401.58-69 (2024).
Қосымша файлдар


