Microbiological water quality of Lake Baikal: a review

Cover Page

Cite item

Full Text

Abstract

The article provides information about the sanitary-bacteriological studies conducted in the water area of Lake Baikal. We show the data on the long-term observations of the spread and abundance of fecal indicator bacteria and potentially pathogenic bacteria in the pelagic and littoral waters of the lake. We also present a review of the standards and methods for the sanitary-bacteriological water quality worldwide, techniques for detecting fecal indicator bacteria, including those specific for human microbiota, methods for microbial source tracking, as well as studies of the spread and retaining of fecal indicator bacteria in various ecotopes, such as bottom sediments and biofilms. For the sanitary-bacteriological monitoring of Lake Baikal, we propose an integrated approach based on the application of modern techniques that correspond to world practice. This approach would allow identification of the sanitary adverse sites and more reliable and standardized assessment of the Baikal water quality.

About the authors

Yu. R. Shtykova

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: suslova@lin.irk.ru
Russian Federation, Ulan-Batorskaya 3, 664033 Irkutsk

M. Yu. Suslova

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: suslova@lin.irk.ru
Russian Federation, Ulan-Batorskaya 3, 664033 Irkutsk

V. V. Drucker

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: suslova@lin.irk.ru
Russian Federation, Ulan-Batorskaya 3, 664033 Irkutsk

O. I. Belykh

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: suslova@lin.irk.ru
Russian Federation, Ulan-Batorskaya 3, 664033 Irkutsk

References

  1. Aguirre B.P., Masachessi G., Ferreyra L.J. et al. 2019. Searching variables to assess recreational water quality: the presence of infectious human enterovirus and its correlation with the main variables of water pollution by multivariate statistical approach in Córdoba, Argentina. Environmental Science and Pollution Research 26: 6586–6601. doi: 10.1007/s11356-019-04124-2
  2. Ashbolt N.J., Amezquita A., Backhaus T. et al. 2013. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives 121: 993–1001. doi: 10.1289/ehp.1206316
  3. Atlas of Lake Baikal. 1993. In: Galazy G.I. (Ed.). Moscow: Roskartografia. (in Russian)
  4. Balzer M., Witt N., Flemming H.-C.J. 2010. Faecal indicator bacteria in river biofilm. Wingender Water Science & Technoiogy 61: 1105–1111. doi: 10.2166/wst.2010.022
  5. Belykh O.I., Tikhonova I.V., Kuzmin A.V. et al. 2016. First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins. Toxicon 121: 36–40. doi: 10.1016/j.toxicon.2016.08.015
  6. Belykh O.I., Drucker V.V. 2018. Microbiological studies of Lake Baikal in Limnological institute: past and present. Limnology and Freshwater Biology 1: 18–27. doi: 10.31951/2658-3518-2018-A-1-18
  7. Berglund B. 2015. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infection Ecology and Epidemiology 5. doi: 10.3402/iee.v5.28564
  8. Bondarenko N.A., Malnik V.V., Vishnyakov V.S. et al. 2015. Modern state of the biota of the Selenga River Delta (Lake Baikal basin) under conditions of unstable hydrological regime. Report 1. Microbial community and algae. Hydrobiological Journal 52: 17–29. doi: 10.1615/HydrobJ.v52.i1.20
  9. Bower P.A., Scopel C.O., Jensen E.T. et al. 2005. Detection of genetic markers of fecal indicator bacteria in Lake Michigan and determination of their relationship to Escherichia coli densities using standard microbiological methods. Applied and Environmental Microbiology 71: 8305–8313. doi: 10.1128/AEM.71.12.8305-8313.2005
  10. Brazilian Ministry of Health. 1976. Classifying domestic water courses in order to protect their quality.
  11. Byamukama D., Kansiime F., Mach R.L. et al. 2000. Determination of Escherichia coli contamination with chromocult coliform agar showed a high level of discrimination efficiency for differing fecal pollution levels in tropical waters of Kampala, Uganda. Applied and Environmental Microbiology 66: 864–868. DOI: 0099-2240/00/$04.0010
  12. Darkazanli M., Kiseleva I.S., Darkazanli K. 2018. Detection and isolation of E. coli and E. coli O157:H7 from Aleppo River water samples by RAPD marker. Scientific Almanac 8-1: 129–132. doi: 10.17117/na.2018.08.01.129
  13. Davies C.M., Long J.A.H., Donald M. et al. 1995. Survival of fecal microorganisms in marine and freshwater sediments. Applied and Environmental Microbiology 61: 1888–1896.
  14. Deshmukh R.A., Joshi K., Bhand S. et al. 2016. Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. Microbiology 5: 901–922. doi: 10.1002/mbo3.383
  15. Directive 2006/7/EC. 2006. Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. 2006. Council of the European Union, European Parliament.
  16. Drucker V.V., Kostornova T.Ya., Molozhavaya O.A. et al. 1993. Water quality assessment of Lake Baikal by sanitary and bacteriological indicators. Geography and natural resources 1: 60–64.
  17. Drucker V.V., Panasyuk E.Yu. 2006. Potentially pathogenic bacteria in a microbial community of Lake Baikal. Hydrobiologia 568: 267–271. doi: 10.1007/s10750-006-0304-z
  18. Evstropyeva O.V. 2016. Development of the tourism system on the Baikal natural territory. Geography and natural resources 5: 184–195. doi: 10.21782/GIPR0206-1619-2016-5(184-195)
  19. Goman G.A. 1973. Influence of waste water of the Baikal pulp mill on biological processes in water and bottom sediments of South Baikal. Cand. Sc. Dissertation, Irkutsk State University A.A. Zhdanova, Irkutsk, Russia. (in Russian)
  20. GOST 24849-2014. 2016. Voda. Metody sanitarno-bakteriologicheskogo analiza dlya polevykh usloviy [Water. Methods of sanitary-bacteriological analysis for field conditions].
  21. Grachev M.A. 2002. On the current state of the ecological system of Lake Baikal. Novosibirsk: Publishing House of the SB RAS. (in Russian)
  22. Gubelit Yu.I., Vainshtein M.B. 2011. Grow of enterobacteria on algal mats in the eastern part of the gulf of Finland. Inland Water Biology 4: 132–136. doi: 10.1134/S1995082911020246
  23. Gunda N.S.K., Dasgupta S., Mitra S.K. 2017. DipTest: A litmus test for E. coli detection in water. PLoS ONE 12. doi: 10.1371/journal.pone.0183234
  24. Gutierrez-Cacciabue D., Teich I., Poma H.R., Cruz M.C. et al. 2014. Strategies to optimize monitoring schemes of recreational waters from Salta, Argentina: a multivariate approach. Environmental Monitoring and Assessment 186: 8359–8380. doi: 10.1007/s10661-014-4010-4
  25. Haller L., Pote J., Loizeau J.-L. et al. 2009. Distribution and survival of faecal indicator bacteria in the sediments of the Bay of Vidy, Lake Geneva, Switzerland. Ecological Indicators 9: 540–547. doi: 10.1016/j.ecolind.2008.08.001
  26. Harwood V., Shanks O., Korajkic A. 2017. General and host-associated bacterial indicators of faecal pollution. In: Global Water Pathogen Project. Michigan State University. http://www.waterpathogens.org/book/bacterial-indicators.
  27. Khanaev I.V., Dzyuba E.V., Kravtsova L.S. et al. 2016. The effect of bloom of filamentous green algae on the reproduction of yellowfin sculpin Cottocomephorus Grewingkii (Dybowski, 1874) (Cottoidae) during ecological crisis in Lake Baikal. Doklady Biologycal Sciences 467: 63–64. doi: 10.1134/S0012496616020022
  28. Khodzher T.V., Domysheva V.M., Sorokovikova L.M. et al. 2017. Current chemical composition of Lake Baikal water. Inland Waters 7: 250–258. doi: 10.1080/20442041.2017.1329982
  29. Japan Environment Agency. 1986. Environmental quality standards regarding water pollution.
  30. Kobanova G.I., Takhteev V.V., Rusanovskaya O.O. et al. 2016. Lake Baikal ecosystem faces the threat of eutrophication. International Journal of Ecology 2016. doi: 10.1155/2016/6058082
  31. Kon T., Weir S.C., Howell E.T. et al. 2007. Genetic relatedness of Escherichia coli isolates in interstitial water from a Lake Huron (Canada) beach. Applied and Environmental Microbiology 73: 1961–1967. doi: 10.1128/AEM.02437-06
  32. Korajkic A., McMinn B.R., Harwood V.J. 2018. Relationships between microbial indicators and pathogens in recreational water settings. International Journal of Environmental Research and Public Health 15. doi: 10.3390/ijerph15122842
  33. Kovadlo A.S., Drucker V.V. 2010. Study of bacterial plankton of Selenga River and quality assessment of its water on microbiological indicators. Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya «Nauki o zemle» [Irkutsk State University Bulletin. Series “Earth Sciences”] 3: 80–87. (in Russian)
  34. Kravchenko O.S. 2009. Bacteria of the genus Enterococcus in Lake Baikal: distribution, species, adaptation mechanism. Cand. Sc. Dissertation, Buryat State University, Ulan-Ude, Russia. (in Russian)
  35. Kravtsova L.S., Izhboldina L.A., Khanaev I.V. et al. 2012. Disturbances of the vertical zoning of green algae in the coastal part of the Listvennichnyi gulf of Lake Baikal. Doklady Biological Sciences 447: 350–352. doi: 10.1134/S0012496612060026
  36. Kravtsova L.S., Izhboldina L.A., Khanaev I.V. et al. 2014. Nearshore benthic blooms of filamentous green algae in Lake Baikal. Journal of Great Lakes Research 40: 441–448. doi: 10.1016/j.jglr.2014.02.019
  37. Ksoll W.B., Ishii S., Sadowsky M.J. et al. 2007. Presence and sources of fecal coliform bacteria in epilithic periphyton communities of Lake Superior. Applied and Environmental Microbiology 73: 3771–3778. doi: 10.1128/AEM.02654-06
  38. Leclerc H., Mossel D.A.A., Edberg S.C. et al. 2001. Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annual Review of Microbiology 55: 201–234. doi: 10.1146/annurev.micro.55.1.201
  39. Lenart-Boron A., Wolanin A., Jelonkiewicz E. et al. 2017. The effect of anthropogenic pressure shown by microbiological and chemical water quality indicators on the main rivers of Podhale, southern Poland. Environmental Science and Pollution Research 24: 12938–12948. doi: 10.1007/s11356-017-8826-7
  40. Maksimov V.V., Astafyev V.A., Dukhanina A.V. et al. 2003. Indications of pathogenic viruses in water of Lake Baikal and its tributaries. Gigiena i sanitariia [Hygiene and Sanitary] 2: 15–18. (in Russian)
  41. Maksimova E.А., Maksimov V.N. 1989. Microbiology of Baikal waters. Irkutsk: Publishing House of the Irkutsk State University. (in Russian)
  42. Maksimova E.А., Maksimov V.N., Kolesnitskaya G.N. et al. 1998. Long-term sanitary and bacteriological information on the state of the waters of South Baikal. In: Materials of the anniversary conference «Modern problems of ecology, environmental management and resource conservation of the Baikal region», pp. 286. (in Russian)
  43. MUK 4.2.1884-04. 2004. Sanitarno-mikrobiologicheskiy i sanitarno-parazitologicheskiy analiz vody poverkhnostnykh vodnykh obyektov. Metodicheskiye ukazaniya [Sanitary-microbiological and sanitary-parasitological analysis of surface water bodies. Methodical instructions]. (in Russian)
  44. Namsarayev B.B., Zemskaya T.I. 2000. Microbiological processes of carbon cycle in the bottom sediments of Lake Baikal. Novosibirsk: Publishing House of the SB RAS. (in Russian)
  45. Newton R.J., Vandewalle J.L., Borchardt M.A. et al. 2011. Lachnospiraceae and Bacteroidales alternative fecal indicators reveal chronic human sewage contamination in an urban harbor. Applied and Environmental Microbiology 77: 6972–6981. doi: 10.1128/AEM.05480-11
  46. Newton R.J., Bootsma M.J., Morrison H.G. et al. 2013. A microbial signature approach to identify fecal pollution in the waters off an urbanized coast of Lake Michigan. Microbial Ecology 65: 1011–1023. doi: 10.1007/s00248-013-0200-9
  47. Olapade O.J. 2012. Anthropogenic pollution impact on microbial contamination of Lake Kivu, Rwanda. West African Journal of Applied Ecology 20: 23–31.
  48. Ouattara N.K., Passerat J., Servais P. 2011. Faecal contamination of water and sediment in the rivers of the Scheldt drainage network. Environmental Monitoring and Assessment 183: 243–257.
  49. Panasyuk E.Yu. 2002. Features of the diversity of opportunistic bacteria of Lake Baikal and their importance in assessing water quality. Cand. Sc. Dissertation, Irkutsk State Medical University, Irkutsk, Russia. (in Russian)
  50. Panasyuk E.Yu., Drucker V.V., Parfenova V.V. et al. 2002. Biodiversity and distribution of bacteria of Enterobacteriaceae family and of non-enzymatic group in the Lake Baikal. Sibirskiy Ekologicheskiy Zhurnal [Contemporary Problems of Ecology] 4: 485–490. (in Russian)
  51. Parfenova V.V., Kravchenko O.S., Pavlova O.N. 2008. Distribution and antibiotic resistance of Enterococcus isolated from Lake Baikal. Sibirskiy Medicinskiy Zhurnal [Siberian Medical Journal] 3: 78–81. (in Russian)
  52. Parfenova V.V. 2009. Water quality assessment of Lake Baikal. Gosudarstvennyy doklad o sostoyanii i ob okhrane okruzhayushchey sredy Irkutskiy oblasti v 2008 godu [State report on the state and protection of the environment of the Irkutsk region in 2008], pp. 356–359.
  53. Parfenova V.V., Zemskaya T.I., Pavlova O.N. et al. 2009a. Certificate of official registration of the database № 2009620013 ROSPATENT RF. Sanitary and bacteriological indicators of the water quality of Lake Baikal. Right holder: Limnological Institute SB RAS. Application No. 2008620385. The date of registration is 01/11/2009. (in Russian)
  54. Parfenova V.V., Kravchenko O.S., Pavlova O.N. et al. 2009b. Lake Baikal water quality, problems and prospects for its use. Proizvodstvenno-tekhnicheskiy i nauchno-prakticheskiy zhurnal.Vodoochistka. Vodopodgotovka. Vodosnabzheniye. [Industrial and scientific and practical journal. Water purification. Water treatment. Water supply.] 1: 48–54. (in Russian)
  55. Parfenova V.V., Pavlova O.N., Kravchenko O.S. et al. 2010. Investigation of distribution, species composition, and degree of resistance to antibiotics of the bacteria of the Enterococcus genus in Lake Baikal. Contemporary Problems of Ecology 3: 457–462. doi: 10.1134/S1995425510040090
  56. Parfenova V.V., Belkova N.L., Pestunova O.S. et al. 2016. Microbiological monitoring of Lake Baikal. In: Mueller L., Sheudshen A.K., Eulenstein F. (Eds.), Novel methods for monitoring and managing land and water resources in Siberia. Switzerland, pp. 133–155. doi: 10.1007/978-3-319-24409-9_4
  57. Potapskaya N.V., Kulikova N.N., Timoshkin O.A. et al. 2016. Estimation of the accumulation of consumption wastes in the coastal zone of Lake Baikal and the delta of the Selenga River. Geografija i prirodnye resursy [Geography and Natural Resources] 1: 62–69. (in Russian)
  58. Ran Q., Badgley B.D., Dillon N. et al. 2013. Occurrence, genetic diversity, and persistence of Enterococci in a Lake Superior watershed. Applied and Environmental Microbiology 79: 3067–3075. doi: 10.1128/AEM.03908-12
  59. Republic of Kenya. 2006. Environmental management and coordination (Water quality) regulations.
  60. Sales-Ortells H., Agostini G., Medema G. 2015. Quantification of waterborne pathogens and associated health risks in urban water. Environmental Science & Technology 11: 6943–6952. doi: 10.1021/acs.est.5b00625
  61. SanPiN2.1.5.980-00. 2001. Sanitarnyye pravila i normy «Gigiyenicheskiye trebovaniya k okhrane poverkhnostnykh vod» [Sanitary rules and norms «Hygienic requirements for the protection of surface water»]. (in Russian)
  62. Savilov E.D., Mamontova L.M., Anganova E.V., Astafev V.A. 2008. Conditionally-pathogenic microorganisms in water objects of Eastern Siberia and their role in quality evaluation of waters. Byulleten SO RAMN [Bulletin of the SB RAMS] 1: 47–51. (in Russian)
  63. Shchetinina E.V., Maksimov V.V. 1999. Indicator role of saprophytic microorganisms in the system of river and lake waters of Baikal. In: Problemy ekologii. Chteniya pamyati prof. M.M. Kozhova [Problems of Ecology. Readings in the memory of prof. M.M. Kozhov], pp. 73–75. (in Russian)
  64. Shchetinina E.V., Kraikivskaya O.V., Maksimova E.A. 2003. Integrated ecological-microbiological, sanitary-bacteriological and virological assessment of the Baikal water quality. In: International Baikal Symposium on Microbiology, pp. 152–153.
  65. Shchetinina E.V., Maksimov V.V., Kraikivskaya O.V. et al. 2013. Assessing the state of water masses of the Southern Baikal in the zone of influence of Baikal PPM by many-year microbiological characteristics. Water Resources 40: 649–656. doi: 10.1134/S0097807813060109
  66. Shtykova Yu.R., Suslova M.Yu., Kostornova T.Ya. et al. 2016. Sanitary and microbiological monitoring of the Lake Baikal pelagical zone and Baikal’s major triburaries from 2010 to 2015. Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya «Biologiya. Ekologiya» [The bulletin of Irkutsk State University. Series «Biology. Ecology»] 17: 50–61. (in Russian)
  67. Shtykova Yu.R., Suslova M.Yu., Kostornova T.Ya. et al. 2017. Monitoring of the water quality of pelagic zone of Lake Baikal and estuaries from 2010 to 2016. In: Vserossiyskaya nauchnaya konferentsiya «Fundamental’nyye problemy ekologii Rossii» [All-Russian Scientific Conference “Fundamental Problems of Ecology of Russia”], pp. 213. (in Russian)
  68. Shtykova Yu.R., Drucker V.V., Sorokovikova E.G. et al. 2018a. Sanitary-microbiological and toxicological monitoring of Lake Baikal. Part 1: water area of the Maloe More in 2016. Sistemy kontrolya okruzhayushchey sredy [Environmental Management Systems] 11: 110–114. (in Russian)
  69. Shtykova Yu.R., Gladkikh А.S., Mironova L.V. et al. 2018b. MALDI-TOF-MS analysis in accelerated identification of opportunistic bacteria in different ecotopes of the coastal zone of Lake Baikal. In: Freshwater Ecosystems – Key Problems (FEKP 2018), pp. 314.
  70. Shtykova Yu.R., Podlesnaya G.V., Malnik V.V. et al. 2018c. Evaluation of the sanitary-microbiological state of the coastal waters of Lake Baikal in 2017. In: International scientific-practical conference «Social and environmental problems of the Baikal region and adjacent territories», pp. 404–406.
  71. Staradumskyte D., Paulauskas A. 2012. Indicators of microbial drinking and recreational water quality. Biologija 58: 7–13. doi: 10.6001/biologija.v58i1.2317
  72. Strathmann M., Horstkott М., Koch Ch. et al. 2016. The River Ruhr – an urban river under particular interest for recreational use and as a raw water source for drinking water: the collaborative research project “Safe Ruhr” – microbiological aspects. International Journal of Hygiene and Environmental Health 219: 643–661. doi: 10.1016/j.ijheh.2016.07.005
  73. Sukhanova E.V., Shtykova Yu.R., Suslova M.Yu. et al. 2019. Diversity and physiological and biochemical propreties of heterotrophic bacteria isolated from Lake Baikal epilithic biofilms. Microbiology 88: 345–357. doi: 10.1134/S0026365619030145
  74. Suslova M.Yu., Pestunova O.S., Parfenova V.V. 2017a. Water quality assessment in the Selenga River and its delta in terms of sanitary and microbiological indices. Hydrobiological Journal 53: 70–81. doi: 10.1615/HydrobJ.v53.i3.70
  75. Suslova M.Yu., Shtykova Yu.R., Kostornova T.Ya. et al. 2017b. Water quality of Lake Baikal and estuarine sites of major tributaries of the lake in 2016. Gosudarstvennyy doklad o sostoyanii i ob okhrane okruzhayushchey sredy Irkutskiy oblasti v 2016 godu [State report on the state and protection of the environment of the Irkutsk region in 2016], pp. 230–231.
  76. Suslova M.Yu., Shtykova Yu.R., Sukhanova E.V. et al. 2018a. Water quality of Lake Baikal and estuarine sites of major tributaries of the lake in 2017. Gosudarstvennyy doklad o sostoyanii i ob okhrane okruzhayushchey sredy Irkutskiy oblasti v 2017 godu [State report on the state and protection of the environment of the Irkutsk region in 2017], pp. 212–214.
  77. Suslova M.Yu., Pestunova O.S., Sukhanova E.V. et al. 2018b. Role of cultured microorganisms from biofilms formed on rocky substrates in the Lake Baikal self-purification system. Microbiology 87: 718–726. doi: 10.1134/S0026365618060186
  78. Suturin A.N., Chebykin Y.P., Malnik V.V. et al. 2016. The role of anthropogenic factors in the development of ecological stress in Lake Baikal littoral (the Listvyanka settlement lakescape). Geography and Natural Resources 6: 43–54. doi: 10.21782/GIPR0206-1619-2016-6(43-54)
  79. Tekanova E.V., Makarova E.V., Кalinkina N.M. 2015. An assesment of the condition of the water of Lake Onego inflowing streams under human impact influence using microbiological and toxicological parameters. Izvestiya Karel’skogo nauchnogo tsentra RAN [Proceedings of the Karelian Research Center of RAS] 9: 44–52. DOI: 10/17076/lim35 (in Russian)
  80. Thevenon F., Regier N., Benagli C. et al. 2012. Characterization of fecal indicator bacteria in sediments cores from the largest freshwater lake of Western Europe (Lake Geneva, Switzerland). Ecotoxicology and Environmental Safety 78: 50–56. doi: 10.1016/j.ecoenv.2011.11.005
  81. Timoshkin O.A., Bondarenko N.A., Volkova E.A. et al. 2014a. Mass development of green filamentous algae of the genera Spirogyra and Stigeoclonium (Chlorophyta) in the littoral zone of the southern part of Lake Baikal. Hydrobiological Journal 51: 13–23. doi: 10.1615/HydrobJ.v51.i1.20
  82. Timoshkin O.A., Malnik V.V., Sakirko M.V. 2014b. Ecological crisis on Lake Baikal: diagnosed by scientists. Science First Hand 5: 74–91.
  83. Timoshkin O.A., Malnik V.V., Sakirko M.V. et al. 2015. Ecological crisis in the coastal zone of Lake Baikal. In: 6th International Vereshchagin Baikal Conference. 4th Baikal symposium on microbiology (BSM-2015) «Microorganisms and viruses in aquatic ecosystems», pp. 37–40.
  84. Timoshkin O.A., Samsonov D.P., Yamamuro M. et al. 2016. Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): is the site of the world’s greatest freshwater biodiversity in danger? Journal of Great Lakes Research 42: 487–497. doi: 10.1016/j.jglr.2016.02.011
  85. Timoshkin O.A., Moore M.V., Kulikova N.N. et al. 2018. Groundwater contamination by sewage causes benthic algal outbreaks in the littoral zone of Lake Baikal (East Siberia). Journal of Great Lakes Research 44: 230–244. doi: 10.1016/j.jglr.2018.01.008
  86. Tsoupikova N. 2016. Criteria of inland surface water quality assessment in the RF and EU. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Ekologiya i bezopasnost’ zhiznedeyatel’nosti [Bulletin of People’s Friendship University. Series: Ecology and Life Safety] 1: 65–77. (in Russian)
  87. Tymchuk S.N., Larin V.E., Sokolov D.M. 2013. Most significant sanitary microbiological parameters of drinking water quality assessment. Vodosnabzheniye i Sanitarnaya Tekhnika [Water Supply and Sanitary Technology] 11: 8–15. (in Russian)
  88. USEPA. 2010. Method B: Bacteroidales in water by TaqMan quantitative polymerase chain reaction (qPCR) assay. Washington, DC.
  89. USEPA. 2012a. Recreational water quality criteria. Washington, DC.
  90. USEPA. 2012b. Method 1611: Enterococci in water by TaqMan quantitative polymerase chain reaction (qPCR) assay. Washington, DC.
  91. USEPA. 2013. Method 1609: Enterococci in water by TaqMan quantitative polymerase chain reaction (qPCR) with internal amplification control (IAC) assay. Washington, DC.
  92. Verkhozina E.V. 2003. Microorganisms of Lake Baikal as indicators of anthropogenic influence and the prospect of their use in biotechnology. Cand. Sc. Dissertation, Institute of Epidemiology and Microbiology, Ulan-Ude, Russia. (in Russian)
  93. Verkhozina E.V., Verkhozina V.A., Savilov E.D. et al. 2003. Water quality assessment of Lake Baikal by microbiological indicators. Sibir-Vostok [Siberia-East] 11: 32–34. (in Russian)
  94. Verkhozina V.A., Verkhozina E.V., Verkhoturov V.V. et al. 2014a. Monitoring studies of the microbial community of the littoral zone in the southern Baikal region. Voda: Khimiya i Ekologiya [Water: Chemistry and Ecology] 3: 66–70. (in Russian)
  95. Verkhozina E.V., Verkhozina V.A., Savilov E.D. et al. 2014b. Antibiotic resistance of microbial community of the Lake Baikal ecosystem in the area of Listvyanka, Slyudyanka and Baikalsk. Acta Biomedica Scientifica 3: 62–65. (in Russian)
  96. Xu R., Yang Zh.–H., Wang Q.-P. et al. 2018. Rapid startup of thermophilic anaerobic digester to remove tetracycline and sulfonamides resistance genes from sewage sludge. Science of Total Environment 612: 788–798. doi: 10.1016/j.scitotenv.2017.08.295

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Shtykova Y.R., Suslova M.Y., Drucker V.V., Belykh O.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».