Fluorescent dyes for the study of siliceous sponges
- Autores: Danilovtseva E.N.1, Palshin V.A.1, Zelinskiy S.N.1, Annenkov V.V.1
-
Afiliações:
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences
- Edição: Nº 5 (2019)
- Páginas: 302-307
- Seção: Articles
- URL: https://bakhtiniada.ru/2658-3518/article/view/292304
- DOI: https://doi.org/10.31951/2658-3518-2019-A-5-302
- ID: 292304
Citar
Texto integral
Resumo
New fluorescent dyes containing coumarine and rhodamine groups were applied as vital dyes capable of staining growing siliceous spicules of Baikal sponge Lubomirskia baicalensis (Pallas, 1773). Cultivation of the sponge primmorphs in the presence of fluorescent dyes allows the use of confocal microscopy to study the morphology of the spicules and, in the case of two-color staining, to draw some conclusions about the growth rate of the spicules. 5-6.5 months were estimated to be the time required for the full formation of the spicules.
Palavras-chave
Sobre autores
E. Danilovtseva
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Email: annenkov@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033
V. Palshin
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Email: annenkov@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033
S. Zelinskiy
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Email: annenkov@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033
V. Annenkov
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: annenkov@lin.irk.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033
Bibliografia
- Annenkov V.V., Danilovtseva E.N., Zelinskiy S.N. et al. 2010. Novel fluorescent dyes based on oligopropylamines for the in vivo staining of eukaryotic unicellular algae. Analytical Biochemistry 407: 44-51. doi: 10.1016/j.ab.2010.07.032
- Annenkov V.V., Glyzina O.Yu., Verkhozina O.N. et al. 2014. Fluorescent amines as a new tool for study of siliceous sponges. Silicon 6: 227-231. doi: 10.1007/s12633-014-9220-4
- Annenkov V.V., Pyshnyj D.V., Danilovtseva E.N. et al. 2016a. Analogues of natural deoxyribonucleoside triphosphates and ribonucleoside triphosphates containing reporter fluorescent groups, for use in analytical bioorganic chemistry. Patent RU 2582198
- Annenkov V.V., Danilovtseva E.N. 2016b. Spiculogenesis in the siliceous sponge Lubomirskia baicalensis studied with fluorescent staining. Journal of Structural Biology 194: 29-37. doi: 10.1016/j.jsb.2016.01.010
- Annenkov V.V., Zelinskiy S.N., Pal’shin V.A. et al. 2019. Coumarin based fluorescent dye for monitoring of siliceous structures in living organisms. Dyes and Pigments 160: 336-343. doi: 10.1016/j.dyepig.2018.08.020
- Blunt J.W., Carroll A.R., Copp B.R. et al. 2018. Marine natural products. Natural Product Reports 35: 8-53. doi: 10.1039/c7np00052a
- Carroll A.R., Copp B.R., Davis R.A. et al. 2019. Marine natural products. Natural Product Reports 36: 122-173. doi: 10.1039/c8np00092a
- Custodio M.R., Prokic I., Steffen R. et al. 1998. Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mechanisms of Ageing and Development 105: 45-59. doi: 10.1016/S0047-6374(98)00078-5
- Denikina N.N., Dzyuba E.V., Bel’kova N.L. et al. 2016. The first case of disease of the sponge Lubomirskia baicalensis: investigation of its microbiome. Biology Bulletin 43: 263-270. doi: 10.1134/S106235901603002X
- El-Demerdash A., Atanasov A.G., Horbanczuk O.K. et al. 2019. Chemical diversity and biological activities of marine sponges of the Genus Suberea: A systematic review. Marine Drugs 17: 115. doi: 10.3390/md17020115
- Khalifa S.A.M., Elias N., Farag M.A. et al. 2019. Marine natural products: a source of novel anticancer drugs. Marine Drugs 17: 491. doi: 10.3390/md17090491
- Khanaev I.V., Kravtsova L.S., Maikova O.O. et al. 2018. Current state of the sponge fauna (Porifera: Lubomirskiidae) of Lake Baikal: sponge disease and the problem of conservation of diversity. Journal of Great Lakes Research 44: 77-85. doi: 10.1016/j.jglr.2017.10.004
- Kwon J.Y., Jang Y.J., Lee Y.J. et al. 2005. A highly selective fluorescent chemosensor for Pb2+. Journal of the American Chemical Society 127: 10107-10111. doi: 10.1021/ja051075b
- Mcheik A., Cassaignon S., Livage J. et al. 2018. Optical properties of nanostructured silica structures from marine organisms. Frontiers in Marine Science 5: 123. doi: 10.3389/fmars.2018.00123
- Taylor M.W., Radax R., Steger D. et al. 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews 71: 295-347. doi: 10.1128/MMBR.00040-06
- Veynberg E. 2009. Fossil sponge fauna in Lake Baikal region. In: Müller W.E.G., Grachev M.A. (Eds.), Biosilica in Evolution, Morphogenesis, and Nanobiotechnology. Berlin, Heidelberg, pp. 185-203. doi: 10.1007/978-3-540-88552-8
- Wilson H.V., 1907. On some phenomena of coalescence and regeneration in sponges. Journal of Experimental Zoology 5: 245-257. doi: 10.1002/jez.1400050204.
- Zhang Y.Q, Reed B.W., Chung F.R. et al. 2016. Mesoscale elastic properties of marine sponge spicules. Journal of Structural Biology 193: 67-74. doi: 10.1016/j.jsb.2015.11.009
- Zvereva Y., Medvezhonkova O., Naumova T. et al. 2019. Variation of sponge-inhabiting infauna with the state of health of the sponge Lubomirskia baikalensis (Pallas, 1776) in Lake Baikal. Limnology 20: 267-277. doi: 10.1007/s10201-019-00576-0
Arquivos suplementares
