Hg in waste from mining and processing enterprises in the Republic of Khakassia

Capa

Citar

Texto integral

Resumo

The article presents the original data on the total Hg concentration in the waste of enterprises for the extraction of iron ore, coal and marble located in the Republic of Khakassia. Hg concentrations in the rocks of the dumps and the material of the tailings depend on the electrical conductivity and magnetic susceptibility. The concentration of this element increases in more acidic environmental conditions, and its higher concentrations are associated with particles having a size of 0.04 mm. Geoecological indicators demonstrate the enrichment of Hg waste from all enterprises studied, as confirmed by the calculation data of the enrichment factor.

Texto integral

1. Introduction

The main cause of the negative impact of mining waste on the environment is associated with the migration of chemical elements formed through the placement and long-term storage of material during mining (overburden and enclosing rock dumps) and processing (tailing dumps and sludge ponds) of ores. The danger of waste can be exacerbated by the fact that they contain a large amount of toxic elements, including mercury (Hg). It is one of the priorities for the study of toxic elements (Alekseenko, 2000). Hg concentration exceeding the established standards is most often associated with tailings. The maximum Hg concentration is observed in the halo of the emission source, and the distribution is associated with the landscape and climatic conditions as well as the direction of the prevailing wind. A significant amount of Hg can enter the atmosphere, surface and groundwater from quarry dumps during blasting as well as during dusting and transportation of ores (Belan, 2005; Krupskaya et al., 2009; Zhuravleva, 2016; Gustaitis et al., 2016; Azarova et al., 2018).

2. Materials and methods

The object of the study were samples of dumps, tailings, sludge pits, ash and slag wastes, as well as soils located near dumps taken in the Teisky iron ore deposit, the Kibik-Kordon marble deposit and the Vostochno-Beisky coal mine. Waste and soil were sampled out using the envelope method (51 points) according to (GOST, 1984).

Hg concentration in the samples was determined on a RA-915+ Hg analyzer using the atomic absorption method with the PYRO-915 attachment (pyrolysis method; Hg detection limit 5 ng/g; determination accuracy 5 ng/g; element concentrations were calculated per 1 g of dry substances) in the educational and scientific laboratory on the basis of the School of Natural Resources Engineering at National Research Tomsk Polytechnic University (Shuvaeva et al., 2008). The granulometric analysis of the soils was carried out using laboratory sieves with diameters of 1. 0.5, 0.25, 0.125, 0.1, and 0.04 mm.

The method of the results processing included the calculation of ecological and geochemical indicators: the concentration coefficient relative to the average for the sample (KM), maximum allowable concentration (MAC – 2100 ng/g) (Yanin, 1992), soils of the Earth (KSE) (10 ng/g) (Alekseenko, 2000), clarke concentration (КК) (Yanin, 1992) and enrichment factor (normalization by Sc, own data) (KE).

3. Results and discussion

The mean Hg concentrations in the wastes of mining and processing enterprises of the Republic of Khakassia ranged from 69 to 126 ng/g (Table), with a range of absolute values of 10 to 1044 ng/g. The distribution of Hg in tailings was uneven, as confirmed by the calculation of the variation coefficient (79-489%). The maximum mean concentrations were detected in the waste from the Kibik-Kordon marble deposit (171 ng/g), and the minimum - from the Tei iron ore deposit (69 ng/g). In the waste from the Vostochno-Beisky coal mine, the mean concentration was 91 ng/g.

 

Таble. Geoecological indicators of Hg pressure near the tailings of mining and processing enterprises in the Republic of Khakassia

Sampling site

СHg, ng/g

КM*

МAC

КЕ

КК

К

Tey

51-89

1

0.03

2.4

1.5

6.9

East Beyskoye

35-350

1

0.04

1.9

2

9.1

Kibik-Kordonskoye

10-1044

1.4

0.1

13.7

3.9

17.7

Note: * - see Materials and methods

 

The study of the dependence of element concentrations on the size of soil particles revealed that, in most cases, particles ˃0.04 and <0.004 showed the maximum Hg concentration, i.e. the smallest particles (medium dust, according to (Kachinsky, 1958)). Their proportion was minimum in the soils of all studied tailings. The results obtained were consistent with the statement that the particles with the smallest size had the maximum Hg concentration.

In addition to the Hg concentration in waste samples, we determined such soil characteristics as electrical conductivity, magnetic susceptibility and pH (Fig. 1).

 

Fig.1. Hg concentrations and physical and technical characteristics of the material from tailings of mining and processing enterprises of the Republic of Khakassia: a - Hg concentration, ng/g; b - electrical conductivity, μS/cm; c - magnetic susceptibility 10-3 units, and d - the pH value of soil extract, pH units.

 

Taking into account the relationship of Hg with these characteristics, it is worth noting a rather high correlation between all factors for waste from the Vostochno-Beysky coal mine (Fig. 2). Therefore, to identify the strongest bonds, the critical value r = 0.8 (at P 0.05) was used, which revealed the strongest bond between the metal and the magnetic susceptibility. In the studied tailings, the connecting center for all indicators was precisely the magnetic susceptibility, through which Hg and other indicators were connected with each other. The magnetic susceptibility value indirectly indicated the presence of other metals in the samples. Thus, we assume that Hg is related to other metals, which requires additional studies. Hg concentration depends on the electric conductivity (both positively and negatively) and increases with the shift in the soil reaction towards oxidation (which is rather natural). The relationships obtained indirectly indicated the connection between Hg with other metals.

 

Fig.2. Graphs of the relationship of Hg with material properties of tailings of mining and processing enterprises of the Republic of Khakassia: solid line - positive relationship; dashed line - negative; red – Tey; blue - East Beyskoye and lilac - Kibik-Kordonskoye

 

Calculations of environmental and geochemical indicators of Hg accumulation by waste from mining and processing enterprises of the Republic of Khakassia by different types of soils revealed an excess relative to the mean value for the sample (Table), the concentrations below MPC (2100 ng/g) and enrichment relative to the Clark of the Earth’s crust (45 ng/g) and soils of the Earth (10 ng/g). The enrichment factor also indicates the enrichment of tailings materials and dump rocks in an element.

4. Conclusions

The studies of the concentration and geoecological features of the Hg distribution in the waste of mining and processing enterprises of the Republic of Khakassia revealed that the highest concentrations of this element were observed in the tailings of a marble mining enterprise. In the waste of all enterprises studied, Hg was had the maximum concentrations in the finest fraction, which is consistent with the literature data. Furthermore, in the soils of tailings, Hg depended on the value of electric conductivity, magnetic susceptibility and increased with a change in the reaction of the environment towards acidification. The data from geoecological calculations testified to the Hg enrichment of the waste of enterprises extracting marble, iron and coal, as confirmed by the calculation of some indicators, including the enrichment factor relative to Sc.

Acknowledgments

This study was carried out within the framework of the state budget topic RK 121031300154-1 IK IMKES SB RAS. Research efforts were included in the development program of Tomsk Polytechnic University to make it more competitive among the world’s leading research centers.

Conflict of interest

The authors declare no conflict of interest.

×

Sobre autores

S. Аzarova

National Research Tomsk Polytechnic University

Email: eeldv@mail.ru
Rússia, Lenin Ave., 30 Tomsk, 634050

E. Lyapina

Institute of Monitoring of Climatic and Ecological Systems Siberian Branch of Russian Academy of Sciences

Autor responsável pela correspondência
Email: eeldv@mail.ru
Rússia, Akademichesky Ave., 10/3, Tomsk, 634055

N. Оsipova

National Research Tomsk Polytechnic University

Email: eeldv@mail.ru
Rússia, Lenin Ave., 30 Tomsk, 634050

E. Yazikov

National Research Tomsk Polytechnic University

Email: eeldv@mail.ru
Rússia, Lenin Ave., 30 Tomsk, 634050

Bibliografia

  1. Alekseenko V.A. 2000. Ekologicheskaya geokhimiya [Ecological geochemistry]. Moscow: Logos. (in Russian)
  2. Azarova S.V., Usmanova T.V., Mezhibor A.M. 2018. Environmental problems of mining waste disposal sites in Russia: continuation of residue reviews. In: de Voogt P. (Ed.), Reviews of environmental contamination and toxicology. New York: Springer Nature, pp. 59-84. doi: 10.1007/978-3-030-06231-6
  3. Belan L.N. 2005. Industrial Hg pollution in the mining areas of the Republic of Bashkortostan. Izvestiya Orenburgskogo Gosudarstvennogo Agrarnogo Universiteta [Bulletin of Orenburg State Agrarian University] 10-2(48): 90-94. (in Russian)
  4. GOST 17.4.02-84. 1983. “Soils. Methods for sampling and preparation of samples for chemical, bacteriological, helminthological analysis”, as well as “Temporary guidelines for the control of soil pollution”. Moscow: Gidrometeoizdat. (in Russian)
  5. Gustaitis M.A., Myagkaya I.N., Shcherbov B.L. et al. 2016. Hg pollution of the environment after the operation of the NovoUrskoye gold deposit (Kemerovo region). Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya “Nauki o Zemle” [The Bulletin of Irkutsk State University. Earth Sciences Series] 18: 14-24. (in Russian)
  6. Kachinsky N.A. 1958. Mekhanicheskiy i mikroagregatnyy sostav pochvy, metody yego izucheniya [Mechanical and microaggregate composition of soil, methods of its study]. Moscow: Akademiya nauk SSSR. (in Russian)
  7. Krupskaya L.T., Ionkin K.V., Krupsky A.V. et al. 2009. On the issue of evaluating a tailing dump as a source of environmental pollution. Gornyy Informatsionno-Analiticheskiy Byulletenʹ (Nauchno-Tekhnicheskiy Zhurnal) [Mining Information and Analytical Bulletin (scientific and technical journal)] 5: 234-241. (in Russian)
  8. Shuvaeva O.V., Gustaytis M.A., Anoshin G.N. 2008. Hg speciation in environmental solid samples using thermal release technique with atomic absorption detection. Analytica Chimica Acta 621: 148-154. doi: 10.1016/j.aca.2008.05.034
  9. Yanin E.P. 1992. Rtutʹ v okruzhayushchey srede promyshlennogo goroda [Mercury in the industrial city environment]. Moscow: IMGRE. (in Russian)
  10. Zhuravleva N.V. 2016. Methods for assessing the impact of coal mining and processing processes in the Kuznetsk coal basin on the ecological state of the natural environment. Vestnik Nauchnogo Tsentra po Bezopasnosti Rabot v Ugolʹnoy Promyshlennosti [Industrial Safety] 4: 102-112. (Russia)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig.1. Hg concentrations and physical and technical characteristics of the material from tailings of mining and processing enterprises of the Republic of Khakassia: a - Hg concentration, ng/g; b - electrical conductivity, μS/cm; c - magnetic susceptibility 10-3 units, and d - the pH value of soil extract, pH units.

Baixar (63KB)
3. Fig.2. Graphs of the relationship of Hg with material properties of tailings of mining and processing enterprises of the Republic of Khakassia: solid line - positive relationship; dashed line - negative; red – Tey; blue - East Beyskoye and lilac - Kibik-Kordonskoye

Baixar (26KB)

Declaração de direitos autorais © Аzarova S.V., Lyapina E.E., Оsipova N.A., Yazikov E.G., 2022

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».