Promising ichthyologic studies in Lake Baikal: fundamental and applied aspects

Обложка

Цитировать

Полный текст

Аннотация

Promising areas of ichthyologic research in Lake Baikal have been examined. Particular attention is being paid to the technology of remote fish census, including hydroacoustic methods and the method of quantitative environmental DNA analysis. These technologies may provide information on the status of artificially reproducible populations in reservoirs for developing a proper fishing strategy. The areas of application of molecular genetic methods for solving applied problems in creating the biological bases of fisheries, studying diseases, associated microflora and parasitic fauna, as well as for identifying fish feed objects have been determined. Studies aimed at restoring and maintaining the populations of rare and endangered fish species using artificial reproduction methods, including breeding, hybridization, hormonal stimulation of spawning producers, cryopreservation of sexual products, individual tagging, etc., are discussed. Prospects of mobile remote underwater video monitoring systems, the EthoStudio software package and the holography method to simulate sensory reaction in studying mechanisms of adaptations of fish in natural environment and to develop criteria for assessing their stability in aquaculture conditionshave been reviewed. Combining ethological studies and in-depth integrated morphological, molecular-genetic and physiological-biochemical screening of Baikal fish that would allow to better understand fundamental evolutionary processes responsible for the formation of behavioral adaptations, creation and maintenance of genetic diversity within and between populations in the natural environment, as well as developing recommendations on the introduction of state-of-the-art scientific monitoring approaches into aquaculture are very promising.

Об авторах

E. Dzyuba

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: jsap@mail.ru
Россия, Ulan-Batorskaya Str., 3, Irkutsk, 664033

B. Bogdanov

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: jsap@mail.ru
Россия, Ulan-Batorskaya Str., 3, Irkutsk, 664033

Yu. Sapozhnikova

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Автор, ответственный за переписку.
Email: jsap@mail.ru
Россия, Ulan-Batorskaya Str., 3, Irkutsk, 664033

L. Sukhanova

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: jsap@mail.ru
Россия, Ulan-Batorskaya Str., 3, Irkutsk, 664033

P. Anoshko

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: jsap@mail.ru
Россия, Ulan-Batorskaya Str., 3, Irkutsk, 664033

I. Khanaev

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: jsap@mail.ru
ORCID iD: 0000-0001-6431-2765
Россия, Ulan-Batorskaya Str., 3, Irkutsk, 664033

S. Kirilchik

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: jsap@mail.ru
ORCID iD: 0000-0002-9997-6294
Россия, Ulan-Batorskaya Str., 3, Irkutsk, 664033

Список литературы

  1. Abramova L.S. 2004. Main areas of technological research of VNIRO. Applied Biochemistry and Technology of Hydrobionts: VNIRO Proceedings. Moscow: VNIRO Publishing 143: 9–16. (in Russian)
  2. Barnes M.A., Turner C.R., Jerde C.L. et al. 2014. Environmental conditions influence eDNA persistence in aquatic systems. Environmental Science & Technology 48: 1819–1827. doi: 10.1021/es404734p
  3. Belkova N.L., Denikina N.N., Sukhanova E.V. et al. 2014. Method of sample preparation for the selective detection of live and viable cells that are potential pathogens of fishes. Water: chemistry and ecology 11: 77–82. (in Russian)
  4. Belkova N.L., Denikina N.N., Dzyuba E.V. 2015. Study of intestinal microbiome of Comephorus dybowski Korotneff, 1904. Biology Bulletin 5: 544–551. doi: 10.1134/S1062359015050039
  5. Belkova N., Sidorova T., Glyzina O. et al. 2017. Gut microbiome of juvenile coregonid fishes: comparison of sympatric species and their F1 hybrids. Fundamental and Applied Limnology / Archiv für Hydrobiologie 189: 279–290. doi: 10.1127/fal/2016/0804
  6. Buller N.B. 2004. Bacteria from fish and other aquatic animals: a practical identification manual. Oxfordshire: CABI publishing.
  7. Carreon-Martinez L., Johnson T.B., Ludsin S.A. et al. 2011. Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. Journal of Fish Biology 78: 1170–1182. doi: 10.1111/j.1095-8649.2011.02925.x.
  8. Dejean T., Valentini A., Miquel C. et al. 2012. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. Journal of Applied Ecology 49: 953–959. doi: 10.1111/j.1365-2664.2012.02171.x
  9. Denikina N., Nebesnykh I., Maikova O. et al. 2016. Genetic diversity of Diplomonadida in fish of the genus Coregonus from south- eastern Siberia. Acta Parasitologica 61: 299–306. doi: 10.1515/ap-2016-0040
  10. Dzyuba E.V., Denikina N.N., Sukhanova E.V. et al. 2011. High sensitivity detection of etiological agents of bacterial ulcerous syndrome of Baikalian omul Coregonus migratorius (Georgi, 1775). The Bulletin of Irkutsk State University. Series «Biology. Ecology» 4: 46–52. (in Russian)
  11. Dzyuba E.V., Denikina N.N., Kondratistov Yu.L. et al. 2012. Approbation of the system of highly sensitive detection of pathogenic microorganisms in the aquaculture of ordinary carp Cyprinus carpio Linnaeus, 1758. Izvestia of Samara Scientific Center of the Russian Academy of Sciences 14: 1883–1886. (in Russian)
  12. Dzyuba E.V., Denikina N.N., Sukhanova E.V. et al. 2013. Complex analysis of pathogenic microorganisms of Esox lucius Linnaeus, 1758. Water: chemistry and ecology 3: 113–117. (in Russian)
  13. Dzyuba E.V., Denikina N.N., Pastukhov V.V. et al. 2014a. Development and validation of the molecular-and- genetic technique for diagnosing pathogenic microorganisms on external coatings of fishes. Water: chemistry and ecology 2: 57–62. (in Russian)
  14. Dzyuba E.V., Sukhanova E.V., Denikina N.N. et al. 2014b. Comparative analysis of gut microbiocenoses of salmonid fish with different feeding strategies. Fundamental Research 11: 2429–2433. (in Russian)
  15. Dzyuba E.V., Belkova N.L., Denikina N.N. 2016. A study of the intestinal microbiomes of the Lake Baikal oilfishes (Cottoidei, Comephoridae). Biology Bulletin 6: 658–662. doi: 10.1134/S106235901606008X
  16. Ficetola G.F., Miaud C., Pompanon F. et al. 2008. Species detection using environmental DNA from water samples. Biology Letters 4: 423–425. doi: 10.1098/rsbl.2008.0118
  17. Goldberg C.S., Pilliod D.S., Arkle R.S. et al. 2011. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLoS One 6: e22746. doi: 10.1371/journal.pone.0022746
  18. Hänfling B., Handley L.L., Read D.S. et al. 2016. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Molecular Ecology 25: 3101–3119. doi: 10.1111/mec.13660
  19. Harms-Tuohy C.A., Schizas N.V., Appeldoorn R.S. 2016. Use of DNA metabarcoding for stomach content analysis in the invasive lionfish Pterois volitans in Puerto Rico. Marine Ecology Progress Series 558: 181–191. doi: 10.3354/meps11738.
  20. Jerde C.L., Mahon A.R., Chadderton W.L. et al. 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters 4: 150–157. doi: 10.1111/j.1755-263X.2010.00158.x
  21. Khanaev I.V., Melnik N.G., Timoshkin O.A. et al. 2000. Application of deep water video monitoring system during scientific research in Lake Baikal. In: Third Verschagin Conference, pp. 254.
  22. Kirichenko S.G., Kurlapova L.D., Khromykh N.N. et al. 2004. Valuation of products from hydrobionts // Applied Biochemistry and Technology of Hydrobionts: VNIRO Proceedings. Moscow: VNIRO Publishing 143: 42–44. (in Russian)
  23. Kirilchik S.V., Makarov M.M., Anoshko P.N. et al. 2018. Testing method quantitative eDNA analysis for stock assessment and monitoring of Baikal omul populations. International Journal of Applied and Basic Research 6: 98–102. doi: 10.17513/mjpfi.12300 (in Russian)
  24. Kuznedelov K.D., Dzyuba E.V. 1999. Specific accessories of Baikal planaria cocoons from Baikal black grayling stomach by comparative analysis of nucleotide sequences of gene of ribosome RNA. Journal of General Biology 60: 445–450. (in Russian)
  25. Mahon A.R., Jerde C.L., Galaska M. et al. 2013. Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS ONE 8: e58316. doi: 10.1371/journal.pone.0058316
  26. Majhi S.K., Hattori R.S., Rahman S.M. et al. 2014. Surrogate Production of Eggs and Sperm by Intrapapillary Transplantation of Germ Cells in Cytoablated Adult Fish. PLoS ONE 9: e95294. doi: 10.1371/journal.pone.0095294
  27. Melnik N.G., Smirnova-Zalumi N.S., Smirnov V.V. et al. 2009. Hydroacoustic survey of baikal omul. Novosibirsk: Nauka. (in Russian)
  28. Pilliod D.S., Goldberg C.S., Arkle R.S. et al. 2013. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences 70: 1123–1130. doi: 10.1139/cjfas-2013-0047
  29. Sapozhnikova Yu.P., Klimenkov I.V., Khanaev I.V. et al. 2016. Ultrastructure of saccular epithelium sensory cells of four sculpin fish species (Cottoidei) of Lake Baikal in relation to their way of life. Journal of Ichthyology 56: 289–297. doi: 10.1134/S0032945216010136
  30. Sapozhnikova Yu.P., Belous A.A., Makarov M.M. et al. 2017a. Ultrastructural correlates of acoustic sensitivity in Baikal coregonid fishes. Fundamental and Applied Limnology / Archiv für Hydrobiologie 189: 267–278. doi: 10.1127/fal/2017/0810
  31. Sapozhnikova Yu.P., Tyagun M.L., Makarov M.M. et al. 2017b. Effect of intense underwater sound on auditory organs of Baikal coregonid fishes in aquaculture. Aktualnye problemy nauki Pribaykalya [Key Problems of the Science in Pribaikalye] 2: 188–194. (in Russian)
  32. Sigsgaard E.E., Carl H. Mшller P.R., Thomsen P.F. 2015. Monitoring the near-extinct European weather loach Misgurnus fossilis in Denmark by combining traditional fishing surveys and environmental DNA from water samples. Biological Conservation 183: 46–52. doi: 10.1016/j.biocon.2014.11.023
  33. Smirnov V.V., Smirnova-Zalumi N.S., Sukhanova L.V. et al. 2015. To the measures on preservation of Baikal omul (Coregonus migratorius) stock. Vestnik rybokhozjajstvennoj nauki [Bulletin of Fishery Science] 2: 42–45. (in Russian)
  34. Sukhanova E.V., Dzyuba E.V., Denikina N.N. et al. 2010. Definition of indicating microorganisms for monitoring fishes infectious diseases on the example of Perca fluviatilis (Lake Arahley, Zabaikalskiy kray). Izvestia of Samara Scientific Center of the Russian Academy of Sciences 12: 1156–1161. (in Russian)
  35. Sukhanova L.V., Zhuravlyov O.I., Smirnov V.V. et al. 2011. Prospects for abundance recovery of baikal lacustrine-riverine white-fish and its application. Rybovodstvo i rybnoe hozjajstvo [Fish farming and Fisheries] 10: 26–28.
  36. Suhanova L.V., Smirnov V.V., Teterina V.I. et al. 2015. Synchronization of ovulation in Baikal omul (Coregonus migratorius, Georgi) using human chorionic gonadotropin. Water: chemistry and ecology 12: 125–130. (in Russian)
  37. Sukhanova L.V., Smirnov V.V., Smirnova-Zalumi N.S. et al. 2017. Artificial hybrids of Lake Baikal coregonid fishes – some experience (Coregonus sp.). Aktualnye problemy nauki Pribajkalja [Key Problems of the Science in Pribaikalye] 2: 215–221. (in Russian)
  38. Thomsen P.F., Kielgast J., Iversen L.L. et al. 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology 21: 2565–2573. doi: 10.1111/j.1365-294X.2011.05418.x
  39. Wilcox T.M., McKelvey K.S., Young M.K. et al. 2013. Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS One 8: e59520. doi: 10.1371/journal.pone.0059520
  40. Yamamoto S., Minami K., Fukaya K. et al. 2016. Environmental DNA as a “Snapshot” of fish distribution: a case study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan. PLoS ONE 11: e0149786. doi: 10.1371/journal.pone.0149786

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Dzyuba E., Bogdanov B., Sapozhnikova Y., Sukhanova L., Anoshko P., Khanaev I., Kirilchik S., 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».