Telomere length decreases during early life stages in peled

封面

如何引用文章

全文:

详细

The different type of the age-related dynamics of telomeric DNA in different species indicates the complex mechanisms for regulating telomere length. In fish, telomere length can decrease, be maintained or increase during ontogeny. The cause of this is still unclear, but we assume that the regulation of telomeric DNA length may depend on the activity of protective systems and distribution of energy resources between tissues. We studied age-related dynamics of telomeric DNA in muscles and fins of peled, Coregonus peled, a valuable commercial fish that is widespread in the Russian North and used for successful acclimatization. Using quantitative PCR, we revealed a shortening of telomeric DNA in both tissues during the first two years of life of peled. Perhaps, a pattern of telomeric DNA dynamics is associated with the species-specific features of growth and development since some other salmonids maintain telomere length in the first years of life.

作者简介

A. Koroleva

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ankor-2015@yandex.ru
俄罗斯联邦, 3, Ulan-Batorskaya St., Irkutsk, 664033

Yu. Sapozhnikova

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: ankor-2015@yandex.ru
俄罗斯联邦, 3, Ulan-Batorskaya St., Irkutsk, 664033

M. Tyagun

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: ankor-2015@yandex.ru
俄罗斯联邦, 3, Ulan-Batorskaya St., Irkutsk, 664033

P. Gasarov

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: ankor-2015@yandex.ru
俄罗斯联邦, 3, Ulan-Batorskaya St., Irkutsk, 664033

O. Glyzina

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: ankor-2015@yandex.ru
俄罗斯联邦, 3, Ulan-Batorskaya St., Irkutsk, 664033

L. Sukhanova

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: ankor-2015@yandex.ru
俄罗斯联邦, 3, Ulan-Batorskaya St., Irkutsk, 664033

S. Kirilchik

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: ankor-2015@yandex.ru
俄罗斯联邦, 3, Ulan-Batorskaya St., Irkutsk, 664033

参考

  1. de Abechuco E.L., Hartmann N., Soto M. et al. 2016. Assessing the variability of telomere length measures by means of Telomeric Restriction Fragments (TRF) in different tissues of cod Gadus morhua. Gene Reports 5: 117-125. doi: 10.1016/j.genrep.2016.09.009
  2. Allsopp R., Vaziri H., Patterson C. et al. 1992. Telomere length predicts replicative capacity of human fibroblasts. Proceedings of the National Academy of Sciences USA 89: 10114-10118. doi: 10.1073/pnas.89.21.10114
  3. Caprioli M., Romano M., Romano A. et al. 2013. Nestling telomere length does not predict longevity, but covaries with adult body size in wild barn swallows. Biology Letters 9. doi: 10.1098/rsbl.2013.0340
  4. Carneiro M.C., Henriques C.M., Nabais J. et al. 2016. Short telomeres in key tissues initiate local and systemic aging in zebrafish. PLoS Genetics 12. doi: 10.1371/journal.pgen.1005798
  5. Cawthon R. 2002. Telomere measurement by quantitative PCR. Nucleic Acids Research 30. doi: 10.1093/nar/30.10.e47
  6. Debes P.V., Visse M., Panda B. et al. 2016. Is telomere length a molecular marker of past thermal stress in wild fish? Molecular Ecology 25: 5412-5424. doi: 10.1111/mec.1385
  7. Deng Y., Chang S. 2007. Role of telomeres and telomerase in genomic instability, senescence and cancer. Laboratory Investigation 87: 1071-1076. doi: 10.1038/labinvest.3700673
  8. Doroshuk N.A., Doroshuk A.D., Rodnenkov O.V. et al. 2013. Сhange in length of telomeres of the chromosomes under the influence of the climatic conditions that simulate hot weather at Moscow in summer 2010. Kardiologicheskiy Vestnik [Cardiological Bulletin] VIII (XX) 2: 32-35. (in Russian)
  9. Gao J., Munch S.B. 2015. Does reproductive investment decrease telomere length in Menidia menidia? PLoS One 10. doi: 10.1371/journal.pone.0125674
  10. Gomes N.M., Ryder O.A., Houck M.L. et al. 2011. Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 10: 761-768. doi: 10.1111/j.1474-9726.2011.00718.x
  11. Greider C.W., Blackburn E.H. 1989. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337: 331-337. doi: 10.1038/337331a0
  12. Gruber H., Schaible R., Ridgway I.D. et al. 2014. Telomere-independent ageing in the longest-lived non-colonial animal, Arctica islandica. Experimental Gerontology 51: 38-45. doi: 10.1016/j.exger.2013.12.014
  13. Harley C.B., Futcher A.B., Greider C.W. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345: 458-460. doi: 10.1038/345458a0
  14. Hartmann N., Reichwald K., Lechel A. et al. 2009. Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri. Mechanisms of Ageing and Development 130: 290-296. doi: 10.1016/j.mad.2009.01.003
  15. Hatakeyama H., Nakamura K.-I., Izumiyama-Shimomura N. et al. 2008. The teleost Oryzias latipes shows telomere shortening with age despite considerable telomerase activity throughout life. Mechanisms of Ageing and Development 129: 550-557. doi: 10.1016/j.mad.2008.05.006
  16. Hayflick L., Moorhead P.S. 1961. The serial cultivation of human diploid cell strains. Experimental Cell Research 25: 585-621. doi: 10.1016/0014-4827(61)90192-6
  17. Hayflick L. 1965. The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research 37: 614-636. doi: 10.1016/0014-4827(65)90211-9
  18. Henriques C.M., Carneiro M.C., Tenente I.M. et al. 2013. Telomerase is required for zebrafish lifespan. PLoS Genetics 9. doi: 10.1371/journal.pgen.1003214
  19. Horn T., Gemmell N.J., Robertson B.C. et al. 2008. Telomere length change in European sea bass (Dicentrarchus labrax). Australian Journal of Zoology 56: 207-210. doi: 10.1071/ZO08046
  20. Injaian A.S., Gonzalez-Gomez P.L., Taff C.C. et al. 2019. Traffic noise exposure alters nestling physiology and telomere attrition through direct, but not maternal, effects in a free-living bird. General and Comparative Endocrinology 276: 14-21. doi: 10.1016/j.ygcen.2019.02.017
  21. Izzo C. 2010. Patterns of telomere length change with age in aquatic vertebrates and the phylogenetic distribution of the pattern among jawed vertebrates. PhD Thesis, University Adelaide South Australia, Australia.
  22. Izzo C., Bertozzi T., Gillanders B.M. et al. 2014. Variation in telomere length of the common carp, Cyprinus carpio (Cyprinidae), in relation to body length. Copeia 1: 87-94. doi: 10.1643/CI-11-162
  23. Jonsson B., L’Abée-Lund J.H., Heggberget T.G. et al. 1991. Longevity, body size, and growth in anadromous brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences 48: 1838-1845. doi: 10.1139/f91-217
  24. de Lange T. 2005. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Development 19: 2100-2110. doi: 10.1101/gad.1346005
  25. López-Otín C., Blasco M.A., Partridge L. et al. 2013. The hallmarks of aging. Cell 153: 1194-1217. doi: 10.1016/j.cell.2013.05.039
  26. Louzon M., Coeurdassier M., Gimbert F. et al. 2019. Telomere dynamic in humans and animals: review and perspectives in environmental toxicology. Environment International 131. doi: 10.1016/j.envint.2019.105025
  27. Maximova N., Koroleva A., Sitnikova T. et al. 2017. Age dynamics of telomere length of Baikal gastropods is sex specific and multidirectional. Folia Biologica (Krakow) 65: 187-197. doi: 10.3409/fb65_4.187
  28. Meyne J., Ratliff R.L., Moyzis R.K. 1989. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proceedings of the National Academy of Sciences USA 86: 7049-7053. doi: 10.1073/pnas.86.18.7049
  29. McLennan D., Armstrong J.D., Stewart D.C. et al. 2016. Interactions between parental traits, environmental harshness and growth rate in determining telomere length in wild juvenile salmon. Molecular Ecology 25: 5425-5438. doi: 10.1111/mec.13857
  30. McLennan D., Armstrong J.D., Stewart D.C. et al. 2018. Telomere elongation during early development is independent of environmental temperatures in Atlantic salmon. Journal of Experimental Biology 221. doi: 10.1242/jeb.178616
  31. Mukhachev I.S. 2003. Biotechnics of faster breeding of marketable peled. Tyumen: FGU IPP Tyumen. (in Russian)
  32. Naslund J., Pauliny A., Blomqvist D. et al. 2015. Telomere dynamics in wild brown trout: effects of compensatory growth and early growth investment. Oecologia 177: 1221-1230. doi: 10.1007/s00442-015-3263-0
  33. Oikawa S., Tada-Oikawa S., Kawanishi S. 2001. Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening. Biochemistry 40: 4763-4768. doi: 10.1021/bi002721g
  34. Olovnikov A.M. 1971. Principles of marginotomy in template synthesis of polynucleotides. Doklady Akademii Nauk SSSR [Reports of the USSR Academy of Sciences] 201: 1496-1499. (in Russian)
  35. Olovnikov A.M. 1973. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal of Theoretical Biology 41: 181-190. doi: 10.1016/0022-5193(73)90198-7
  36. Paitz R.T., Haussmann M.F., Bowden R.M. et al. 2004. Long telomeres may minimize the effect of aging in the Painted Turtle. Integrative and Comparative Biology 44: 617.
  37. Pauliny A., Devlin R.H., Johnsson J.I. et al. 2015. Rapid growth accelerates telomere attrition in a transgenic fish. BMC Evolutionary Biology 15: 159. doi: 10.1186/s12862-015-0436-8
  38. Petitjean Q., Jean S., Gandar A. et al. 2019. Stress responses in fish: from molecular to evolutionary processes. Science of the Total Environment 684: 371-380. doi: 10.1016/j.scitotenv.2019.05.357
  39. Rollings N., Miller E., Olsson M. 2014. Telomeric attrition with age and temperature in Eastern mosquitofish (Gambusia holbrooki). Naturwissenschaften [Natural Sciences] 101: 241-244. doi: 10.1007/s00114-014-1142-x
  40. Romaniuk A., Paszel-Jaworska A., Totoń E. et al. 2019. The non-canonical functions of telomerase: to turn off or not to turn off. Molecular Biology Reports 46: 1401-1411. doi: 10.1007/s11033-018-4496-x
  41. Sambrook J., Fritsch E., Maniatis T. 1989. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor.
  42. Shitikov V.K., Rosenberg G.S. 2013. Randomization and bootstrap: statistical analysis in biology and ecology using R. Tol’yatti: Kassandra. (in Russian)
  43. Simide R., Angelier F., Gaillard S. et al. 2016. Age and heat stress as determinants of telomere length in a long-lived fish, the Siberian sturgeon. Physiological and Biochemical Zoology 89: 441-447. doi: 10.1086/687378
  44. Singh A., Kukreti R., Saso L. et al. 2019. Oxidative stress: role and response of short guanine tracts at genomic locations. The International Journal of Molecular Sciences 20. doi: 10.3390/ijms20174258
  45. Tsui J.C.Y. 2005. Evaluation of telomere length as an age marker in marine teleost. PhD Thesis, University of Hong Kong, China.
  46. Voropaeva E.N., Maksimov V.N., Malyutina S.K. et al. 2015. Effects of DNA quality on the measurement of telomere length. Molecular Biology (Mosk) 49: 571-576. doi: 10.7868/S0026898415040199
  47. Woodhead A.D. 1998. Aging, the fishy side: an appreciation of Alex Comfort’s studies. Experimental Gerontology 33: 39-51. doi: 10.1016/s0531-5565(97)00064-8

补充文件

附件文件
动作
1. JATS XML

版权所有 © Koroleva A.G., Sapozhnikova Y.P., Tyagun M.L., Gasarov P.V., Glyzina O.Y., Sukhanova L.V., Kirilchik S.V., 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».