Phylogeny of the freshwater lineages within the phyla Actinobacteria (Overview)
- Autores: Lipko I.A.1
-
Afiliações:
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences
- Edição: Nº 1 (2020)
- Páginas: 358-363
- Seção: Articles
- URL: https://bakhtiniada.ru/2658-3518/article/view/283857
- DOI: https://doi.org/10.31951/2658-3518-2020-A-1-358
- ID: 283857
Citar
Texto integral
Resumo
This review presents molecular classification of freshwater Actinobacteria based on the phylogeny of the 16S rRNA gene. We show the classification of the entire phylum Actinobacteria and the taxonomic rank of freshwater lineages of Actinobacteria within this phylum. The discovery history of different groups of freshwater Actinobacteria is considered. We have systematized the information about the phylogeny of cultivated and uncultivated freshwater Actinobacteria and give their brief description. Data is provided on freshwater groups of Actinobacteria found in different ecotopes of Lake Baikal.
Sobre autores
I. Lipko
Limnological Institute, Siberian Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: irinalipko@yandex.ru
Rússia, Ulan-Batorskaya Str., 3, Irkutsk, 664033
Bibliografia
- Allgaier M., Grossart H.-P. 2006. Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Applied Environmental Microbiology 72: 3489-3497. doi: 10.1128/AEM.72.5.3489-3497.2006
- Barka E.A., Vatsa P., Sanchez L. et al. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews 80: 1-43. doi: 10.1128/MMBR.00019-15
- Bashenkhaeva M.V., Zakharova Yu.R., Petrova D.P. et al. 2015. Sub-ice microalgal and bacterial communities in freshwater Lake Baikal, Russia. Microbial Ecology 70: 751-765. doi: 10.1007/s00248-015-0619-2
- Bashenkhaeva M.V., Zakharova Yu.R., Galachyants Yu.P. et al. 2017. Bacterial communities during the period of massive under-ice dinoflagellate development in Lake Baikal. Microbiology 86: 524-532. doi: 10.1134/S0026261717040038
- Cabello-Yeves P.J., Zemskaya T.I., Rosselli R. et al. 2018. Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Applied Environmental Microbiology 84: 1-21. doi: 10.1128/AEM.02132-17
- Ghai R., McMahon K.D., Rodriguez-Valera F. 2012. Breaking a paradigm: cosmopolitan and abundant freshwater actinobacteria are low GC. Environmental Microbiology Reports 4: 29-35. doi: 10.1111/j.1758-2229.2011.00274.x
- Ghai R., Mizuno C.M., Picazo A. et al. 2013. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Scientific Reports 3. doi: 10.1038/srep02471
- Ghai R., Mizuno C.M., Picazo A. et al. 2014. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing. Molecular Ecology 23: 6073-6090. doi: 10.1111/mec.12985
- Gladkikh A.S., Kaluzhnaya O.V., Belykh O.I. et al. 2014. Analysis of bacterial communities of two Lake Baikal endemic sponge species. Microbiology 83: 787-797. doi: 10.1134/s002626171406006x
- Glöckner F.O., Zaichikov E., Belkova N. et al. 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Applied Environmental Microbiology 66: 5053-5065. doi: 10.1128/AEM.66.11.5053-5065.2000
- Goodfellow M., Williams S.T. 1983. Ecology of actinomycetes. Annual Review of Microbiology 37: 189-216. doi: 10.1146/annurev.mi.37.100183.001201
- Hahn M.W., Lunsdorf H., Wu Q. et al. 2003. Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Applied Environmental Microbiology 69: 1442-1451. doi: 10.1128/AEM.69.3.1442–1451.2003
- Hahn M.W. 2009. Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. International Journal of Systematic and Evolutionary Microbiology 59: 112-117. doi: 10.1099/ijs.0.001743-0
- Hahn M.W., Schmidt J., Taipale S.J. et al. 2014. Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome. International Journal of Systematic and Evolutionary Microbiology 64: 3254-3263. doi: 10.1099/ijs.0.065292-0
- Hiorns W.D., Methe B.A., Nierzwicki-Bauer S.A. et al. 1997. Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Applied Environmental Microbiology 63: 2957-2960.
- Humayoun S.B., Bano N., Hollibaugh J.T. 2003. Depth distribution of microbial diversity in Mono lake, a meromictic Soda lake in California. Applied Environmental Microbiology 69: 1030-1042. doi: 10.1128/AEM.69.2.1030–1042.2003
- Humbert J.F., Dorigo U., Cecchi P. et al. 2009. Comparison of the structure and composition of bacterial communities from temperate and tropical freshwater ecosystems. Environmental Microbiology 11: 2339-2350. doi: 10.1111/j.1462-2920.2009.01960.x
- Jezbera J., Sharma A.K., Brandt U. et al. 2009. ‘Candidatus Planktophila limnetica’, an actinobacterium representing one of the most numerically important taxa in freshwater bacterioplankton. International Journal of Systematic and Evolutionary Microbiology 59: 2864-2869. doi: 10.1099/ijs.0.010199-0
- Jin L., Huy H., Kim K.K. et al. 2013. Aquihabitans daechungensis gen. nov., sp. nov., an actinobacterium isolated from reservoir water. International Journal of Systematic and Evolutionary Microbiology 63: 2970-2974. doi: 10.1099/ijs.0.046060-0
- Kang I., Lee K., Yang S.J. et al. 2012. Genome sequence of ‘Candidatus Aquiluna’ sp. strain IMCC13023, a marine member of the Actinobacteria isolated from an arctic fjord. Journal of Bacteriology 194: 3550-3551. doi: 10.1128/JB.00586-12
- Kang I., Kim S., Islam M.R. et al. 2017. The first complete genome sequences of the acI lineage, the most abundant freshwater Actinobacteria, obtained by whole genome-amplification of dilution to-extinction cultures. Scientific Reports 7. doi: 10.1038/srep42252
- Kim S., Kang I., Seo J-H. et al. 2019. Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical ‘helper’ catalase. The ISME Journal 13: 2252-2263. doi: 10.1038/s41396-019-0432-x
- Krasnopeev A.Yu., Bukshuk N.A., Potapov S.A. et al. 2016. Genetic diversity of bacterial communities associated with diseased sponges of Lake Baikal. Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya “Biologiya. Ekologiya” [The bulletin of Irkutsk State University. Series “Biology. Ecology”] 16: 3-14. (in Russian)
- Kulakova N.V., Sakirko M.V., Adelshin R.V. et al. 2018. Brown rot syndrome and changes in the bacterial community of the Baikal sponge Lubomirskia baicalensis. Microbial Ecology 75: 1024-1034. doi: 10.1007/s00248-017-1097-5
- Kurilkina M.I., Zakharova Yu.R., Galachyants Yu.P. et al. 2016. Bacterial community composition in the water column of the deepest freshwater Lake Baikal as determined by next-generation sequencing. FEMS Microbiology Ecology 92. doi: 10.1093/femsec/fiw094
- Ludwig W., Euzéby J., Schumann P. et al. 2012. Road map of the phylum Actinobacteria. In: Goodfellow M. (Ed.), Bergey’s manual of systematic bacteriology. New York, pp. 1-28.
- Martinez-Garcia M., Swan B.K., Poulton N.J. et al. 2012. High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. The ISME Journal 6: 113-123. doi: 10.1038/ismej.2011.84
- Matsumoto A., Kasai H., Matsuo Y. et al. 2009. Ilumatobacter fluminis gen. nov., sp. nov., a novel actinobacterium isolated from the sediment of an estuary. The Journal of General and Applied Microbiology 55: 201-205. doi: 10.2323/jgam.55.201
- Methe´ B.A., Hiorns W.D., Zehr J.P. 1998. Contrasts between marine and freshwater bacterial community composition—analyses of communities in Lake George and six other Adirondack lakes. Limnology and Oceanography 43: 368-374. doi: 10.4319/lo.1998.43.2.0368
- Mikhailov I.S., Zakharova Yu.R., Galachyants Yu.P. et al. 2015. Similarity of structure of taxonomic bacterial communities in the photic layer of Lake Baikal’s three basins differing in spring phytoplankton composition and abundance. Doklady Biochemistry and Biophysics 465: 413-419. doi: 10.1134/S1607672915060198
- Mikhailov I.S., Zakharova Y.R., Bukin Y.S. et al. 2019. Co-occurrence networks among bacteria and microbial eukaryotes of Lake Baikal during a spring phytoplankton bloom. Microbial Ecology 77: 96-109. doi: 10.1007/s00248-018-1212-2
- Neuenschwander S.M., Ghai R., Pernthaler J. et al. 2018. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. The ISME Journal 12: 185-198. doi: 10.1038/ismej.2017.156
- Newton R.J., Jones S.E., Eiler A. et al. 2011. A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews 75: 14-49. doi: 10.1128/MMBR.00028-10
- Parfenova V.V., Gladkikh A.S., Belykh O.I. 2013. Comparative analysis of biodiversity in the planktonic and biofilm bacterial communities in Lake Baikal. Microbiology 82: 94-105. doi: 10.1134/S0026261713010128
- Parveen B., Reveilliez J.-P., Mary I. et al. 2011. Diversity and dynamics of free-living and particle-associated Betaproteobacteria and Actinobacteria in relation to phytoplankton and zooplankton communities. FEMS Microbiology Ecology 77: 461-476. doi: 10.1111/j.1574-6941.2011.01130.x
- Rappe´ M.S., Gordon D.A., Vergin K.L. et al. 1999. Phylogeny of actinobacteria small subunit (SSU) rRNA gene clones recovered from arine bacterioplankton. Systematic and Applied Microbiology 22: 106-112. doi: 10.1016/S0723-2020(99)80033-2
- Sen A., Daubin V., Abrouk D. et al. 2014. Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders ‘Frankiales’ and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord.nov. and Nakamurellales ord. nov. International Journal of Systematic and Evolutionary Microbiology 64: 3821-3832. doi: 10.1099/ijs.0.063966-0
- Seo E.Y., Jung D., Belykh O.I. et al. 2016. Comparison of bacterial diversity and species composition in three endemic Baikalian sponges. International Journal of Limnology: Annales de Limnologie 52: 27-32. doi: 10.1051/limn/2015035
- Urbach E., Vergin K.L., Young L. et al. 2001. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnology and Oceanography 46: 557-572. doi: 10.4319/lo.2001.46.3.0557
- Ventura M., Canchaya C., Tauch A. et al. 2007. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylura. Microbiology and Molecular Biology Reviews 71: 495-548. doi: 10.1128/MMBR.00005-07
- Warnecke F., Amann R., Pernthaler J. 2004. Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environmental Microbiology 6: 242-253. doi: 10.1111/j.1462-2920.2004.00561.x
- Wu Q.L., Zwart G., Wu J. et al. 2007. Submersed macrophytes play a key role in structuring bacterioplankton community composition in the large, shallow, subtropical Taihu Lake, China. Environmental Microbiology 9: 2765-2774. doi: 10.1111/j.1462-2920.2007.01388.x
- Zakharova Yu.R., Galachyants Yu.P., Kurilkina M.I. et al. 2013. The structure of microbial community and degradation of diatoms in the deep near-bottom layer of Lake Baikal. PLOS ONE 8: 1-12. doi: 10.1371/journal.pone.0059977
- Zemskaya T.I., Lomakina A.V., Mamaeva E.V. et al. 2015. Bacterial communities in sediments of Lake Baikal from areas with oil and gas discharge. Aquatic Microbial Ecology 76: 95-109. doi: 10.3354/ame01773
- Zwart G., Crump B.C., Agterveld M.P. et al. 2002. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology 28: 141-155. doi: 10.3354/ame028141
Arquivos suplementares
