Aluminum-based material for use in hydrogen cartridges of the hydrogen fuel cell supply system

Cover Page

Cite item

Full Text

Abstract

Materials have been developed for hydrogen cartridges using the reaction of activated massive commercial aluminum alloys with water as a hydrogen source. A wide range of industrial aluminum alloys, including secondary aluminum, as well as compacted chips, can be used as starting aluminum materials. It has been shown that activated products are stable for a long time when stored in dry conditions. Prolonged exposure to water vapor leads to loss of reactivity.

About the authors

Alexander I. Nizovskii

Federal Research Center «Boreskov Institute of Catalysis SB RAS»

Author for correspondence.
Email: alexniz@inbox.ru
SPIN-code: 9234-3580

Candidate of Chemical Sciences, Associate Professor, Senior Researcher

Russian Federation, Novosibirsk, Ac. Lavrentieva Ave., 5, 630090

Sofya V. Belkova

Omsk State Technical University

Email: sofya_belkova@mail.ru
SPIN-code: 3650-6466

Candidate of Technical Sciences, Associate Professor, Associate Professor of Industrial Ecology and Safety Department

Russian Federation, Omsk, Mira Ave., 11, 644050

Lev O. Shtripling

Omsk State Technical University

Email: losht59@mail.ru
SPIN-code: 9285-8565

Doctor of Technical Sciences, Professor, Head of Industrial Ecology and Safety Department

Russian Federation, Omsk, Mira Ave., 11, 644050

References

  1. Belitskus D. Reaction of aluminum with sodium hydroxide solution as a source of hydrogen // Journal of the Electrochemical Society. 1970. Vol. 117, no. 8. P. 1097–1099. doi: 10.1149/1.2407730. (In Engl.).
  2. Sheyndlin A. E., Zhuk A. Z. Kontseptsiya alyumovodorodnoy energetiki [The concept of Alum-hydrogenated energy] // Rossiyskiy khimicheskiy zhurnal. Rossiyskiy khimicheskiy zhurnal. 2006. Vol. L, no. 6. P. 105–108. EDN: HZYYVX. (In Russ.).
  3. Sheyndlin A. E., Zhuk A. Z. Alyumovodorodnaya energetika: printsipy i tekhnologii [Aluminohydrogen energy: principles and technologies] // Vestnik Rossiyskoy аkademii nauk. Vestnik Rossijskoj akademii nauk. 2010. Vol. 80, no. 2. P. 143–148. EDN: LOKEXR. (In Russ.).
  4. Srivastava A., Meshram A. On trending technologies of aluminium dross recycling: A review // Process Safety and Environmental Protection. 2023. Vol. 171. P. 38–54. doi: 10.1016/j.psep.2023.01.010. (In Engl.).
  5. Deng Z-Y., Ferreira J. M. F., Sakka Y. Hydrogen-generation materials for portable applications // Journal of the American Ceramic Society. 2008. Vol. 91, no. 12. P. 3825–3834. doi: 10.1111/j.1551-2916.2008.02800. (In Engl.).
  6. Razavi-Tousi S. S., Szpunar J. A. Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water // Journal of Alloys and Compounds. 2016. Vol. 679. P. 364–374. doi: 10.1016/j.jallcom.2016.04.038. (In Engl.).
  7. Ching-Yuan Ho. Hydrolytic reaction of waste aluminum foils for high efficiency of hydrogen generation // International Journal of Hydrogen Energy. 2017. Vol. 42, no. 31. P. 19622–19628. doi: 10.1016/j.ijhydene.2017.06.104. (In Engl.).
  8. Kaur P., Verma. G. A critical assessment of aluminum-water reaction for on-site hydrogen-powered applications // Materials Today Energy. 2024. Vol. 40. 2024101508. doi: 10.1016/j.mtener.2024.101508. (In Engl.).
  9. Deng-Hui X., Yu-Ping Q., Ping W. Rapid hydrogen generation from the reaction of aluminum/activated charcoal composite with alkaline solution // Journal of Alloys and Compounds. 2023. Vol. 947. 169611. doi: 10.1016/j.jallcom.2023.169611. (In Engl.).
  10. Trowell K. A., Goroshin S., Frost D. L., Bergthorson J. M. The use of supercritical water for the catalyst-free oxidation of coarse aluminum for hydrogen production // Sust. Energy Fuels. 2020. Vol. 4, no. 11. P. 5628–5635. doi: 10.1039/d0se00996b. (In Engl.).
  11. Kravchenko O. V., Semenenko K. N., Bulychev B. M., Kalmykov K. B. Activation of aluminum metal and its reaction with water // Journal of Alloys and Compounds. 2005. Vol. 397. P. 58–62. doi: 10.1016/j.jallcom.2004.11.065. (In Engl.).
  12. Parmuzina A. V., Kravchenko O. V. Activation of aluminium metal to evolve hydrogen from water // Int. J. Hydrogen Energy. 2008. Vol. 33. P. 3073–3076. doi: 10.1016/j.ijhydene.2008.02.025. (In Engl.).
  13. Huang X., Gao T., Pan X. [et al.]. A review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications // Journal of Power Sources. 2013. Vol. 229. P. 133–140. doi: 10.1016/j.jpowsour.2012.12.016. (In Engl.).
  14. Dawood F., Anda M., Shafiullah G. M. Hydrogen production for energy: An overview // Int. J. Hydrogen Energy. 2020. Vol. 45. P. 3847–3869. doi: 10.1016/j.ijhydene.2019.12.059. (In Engl.).
  15. Liang G.-qiang, Liu Y., Cheni P.-fei [et al.]. Hydrogen production via hydrolysis of Al-eutectic GaInSn composites // Trans. Nonferrous Met. Soc. China. 2023. Vol. 33. P. 2751–2760. doi: 10.1016/S1003-6326(23)66295-8. (In Engl.).
  16. Zhu L., Zou M., Zhang X. [et al.]. Enhanced hydrogen generation performance of Al-Rich alloys by a melting-mechanical crushing-ball milling method // Materials. 2021. Vol. 14. 7889. doi: 10.3390/ma14247889. (In Engl.).
  17. Wang H., Chang Y., Dong Sh. [et al.]. Investigation on hydrogen production using multicomponent aluminum alloys at mild conditions and its mechanism // Int. J. Hydrogen Energy. 2013. Vol. 38, no. 3. P. 1236–1243. doi: 10.1016/j.ijhydene.2012.11.034. (In Engl.).
  18. Nizovskii A. I., Kulikov A. V., Trenikhin M. V., Bukhtiyarov V. I. Material for compact hydrogen cartridges based on commercial aluminium alloys activated by Ga–In eutectics // Catalysis for Sustainable Energy. 2017. Vol. 4. P. 62–66. doi: 10.1515/cse-2017-0010. (In Engl.).
  19. Zhuk A. Z., Shkolnikov E. I., Borodina T. I. [et al.]. Aluminium — water hydrogen generator for domestic and mobile application // Applied Energy. 2023. Vol. 334. 120693. doi: 10.1016/j.apenergy.2023.120693. (In Engl.).
  20. Trenikhin M. V., Bubnov A. V., Kozlov A. G., Nizovskiy A. I., Duplyakin V. K. Proniknoveniye komponentov indiy-galliyevogo splava v alyuminiy [The penetration of indium-gallium melt components into aluminum] // Zhurnal fizicheskoy khimii. Russian Journal of Physical Chemistry. 2006. Vol. 80, no. 7. P. 1262–1267. EDN: HUZPYN. (In Russ.).
  21. Trenikhin M. V., Bubnov A. V., Nizovskiy A. I., Duplyakin V. K. Vzaimodeystviye evtektiki sistemy In–Ga c alyuminiyem i yego splavami [Chemical interaction of the In-Ga eutectic with al and al-base alloys] // Neorganicheskiye materialy. Inorganic Materials. 2006. Vol. 42, no. 3. P. 298–303. EDN: HSWENP. (In Russ.).
  22. Rehbinder P. A., Shchukin E. D. Surface phenomena in solids during deformation and fracture processes // Progress in Surface Science. 1972. Vol. 3, no. 2. P. 97–104. doi: 10.1016/0079-6816(72)90011-1. (In Engl.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).