🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Анализ налоговой чувствительности отдельных отраслей экономики

Обложка

Цитировать

Полный текст

Аннотация

Статья посвящена количественной оценке налоговой чувствительности отдельных отраслей экономики. Предметом исследования является система показателей, характеризующих сектора экономики на макро- и микроуровнях. Целью исследования является анализ зависимости отраслей экономики от налогового бремени. В работе уделено внимание значимости налогов для экономического роста экономики страны и отраслевых различиях, вызванных уровнем технологического развития, региональных условий, а также от государственного регулирования. Разработан методический подход, позволяющий давать оценку налоговой чувствительности отдельных отраслей, апробированный на наиболее значимых отраслях для бюджета России. В статье проведен анализ налоговой нагрузки и поступлений в консолидированный бюджет, определены отрасли, оказывающие наибольшее влияние на бюджет и для них построены модели, позволяющие давать количественную оценку налоговой чувствительности по совокупности организаций. В качестве методов анализа были использованы современные методы машинного обучения, такие как дерево решений, градиентный бустинг, метод ближайшего соседа, а также классический метод линейной регрессии. Научная новизна исследования заключается в возможности использования разработанного методического подхода для оценки различий в налоговой чувствительности отдельных отраслей экономики для принятия управленческих решений дифференцировано для каждого отдельного сектора. В результате проведенного исследования выявлена высокая налоговая чувствительность отрасли добывающей промышленности, обрабатывающих производств и строительства. Средний уровень налоговой чувствительности характерен для оптовой и розничной торговли; ремонта автотранспортных средств и мотоциклов. Низкая налоговая чувствительность выявлена в финансовой и страховой деятельности. По результатам оценки предложены рекомендации по внедрению налоговых инструментов в деятельность отдельных отраслей и сделан вывод о необходимости специализации механизмов налогового стимулирования по отраслям экономики с целью повышения экономического роста и оптимизации налоговых поступлений.

Об авторах

Анна Евгеньевна Герасимова

Финансовый университет при Правительстве Российской Федерации

Email: kharitonova.ae@yandex.ru
ORCID iD: 0000-0001-8480-6279
доцент; кафедра налогов и налогового администрирования;

Список литературы

  1. Балацкий Е.В., Екимова Н.А. Оценка чувствительности отраслей промышленности России к налоговой нагрузке // Journal of Tax Reform. – 2020. – Т. 6, № 2 – С. 157-179.
  2. Прогноз социально-экономического развития Российской Федерации на 2024 год и на плановый период 2025 и 2026 годов. Режим доступа: https://cedipt.gov.spb.ru/media/uploads/userfiles/2023/10/11/Прогноз_2024-2026.pdf
  3. Какаулина, М.О. Налоговая нагрузка и экономический рост: поиск эффективной модели // Вестник Томского государственного университета. – 2015. – № 394. – С. 181-188.
  4. Папава, В.Г. Лафферов эффект с последействием // Мировая экономика и международные отношения. –2001. – № 7. – С. 34-39.
  5. Лоладзе, Г.Г. О некоторых аспектах кривой Лаффера // Макро-, микроэкономика. – 2002. – № 9. – С. 10-25.
  6. Балацкий, Е.В. Анализ влияния налоговой нагрузки на экономический рост с помощью производственно-институциональных функций // Проблемы прогнозирования. – 2003. – № 2. – С. 88-107.
  7. Балацкий, Е.В. Налогово-бюджетная политика и экономический рост // Общество и экономика. – 2011. – № 4–5. – С. 197-214.
  8. Ананиашвили, Ю.Ш., Папава, В.Г. Налоги и макроэкономическое равновесие: лафферо-кейнсианский синтез. Стокгольм: Издательский дом СА&СС Press, 2010. 142 с.
  9. Гребешкова, И. А. Тенденции в оценке налоговой нагрузки организаций / И. А. Гребешкова // Вестник Финансового университета. – 2017. – Т. 21, № 3(99). – С. 189-193.
  10. Гельбрехт, Д. В. Корреляционно-регрессионный анализ налоговой нагрузки как этап формирования методического инструментария налогового анализа / Д. В. Гельбрехт, М. И. Мигунова, Н. В. Могилевская // Международный научно-исследовательский журнал. – 2021. – № 11-3(113). – С. 151-155.
  11. Костина, З.А., Машенцева, Г.А. Прогнозирование налоговых доходов бюджета субъекта российской федерации с использованием корреляционно-регрессионного анализа // Сибирская финансовая школа. –2019. – № 5. – С. 144-147.
  12. Официальный сайт СПАРК. Режим доступа: https://spark-interfax.ru/?ysclid=lt1vah8k4c958118007
  13. Nasteski, V. An overview of the supervised machine learning methods // Horizons.B. – 2017. – Volume 4. – P. 51-62.
  14. Сравнение классических регрессионных моделей с моделями, построенными с помощью продвинутых методов машинного обучения / А.В. Шатров, Д.Э. Пащенко // Advanced Science. – 2019. – № 1 (12). – С. 24-28.
  15. Шахбанов, З. Метод k ближайших соседей: k-NN. Режим доступа: https://shakhbanov.org/knn-metod-k-blizhayshih-sosedey/
  16. Кернога, А.Л., Бурак, Т.И. Сравнение подходов к прогнозированию методом ближайших соседей // Электротехника, информационные технологии, системы управления. – 2015. – № 13 – С. 26-33.
  17. Rakhimov, Z. Linear regression with data missing not at random: bootstrap approach / Z. Rakhimov, N. Rahimova // Economic Development and Analysis. – 2024. – Vol. 2, No. 4. – P. 492-502.
  18. Moro, A., Maresch, D., Fink, M., Ferrando, A., Claudio, P. Spillover effects of government initiatives fostering entrepreneurship on the access to bank credit for entrepreneurial firms in Europe // Journal of Corporate Finance. – 2020. – Vol. 62. – 101603.
  19. Косенкова, Ю. Ю. Роль налоговых инструментов в обеспечении финансирования малого и среднего предпринимательства / Ю.Ю. Косенкова // Вопросы региональной экономики. – 2023. – № 2(55). – С. 151-159.
  20. Гурнак, А.В., Назарова, Н.А. Налоговое стимулирование экономического роста в России: проблемы и перспективы // Налоги и налогообложение. – 2023. – № 1. – С. 1-16.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».