作为 DNA 表型分析一部分的 DNA 指纹分析所面临的遗传学挑战:综述
- 作者: Chemeris A.V.1, Khalikov A.A.2, Garafutdinov R.R.1, Chemeris D.A.3, Sakhabutdinova A.R.4, Khaliullina A.F.1, Galyautdinov R.R.1, Sagidullin R.H.1, Aminev F.G.1
-
隶属关系:
- Ufa University of Science and Technology
- Bashkir State Medical Universit
- GENVED LLC
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre
- 期: 卷 10, 编号 3 (2024)
- 页面: 398-410
- 栏目: 科学评论
- URL: https://bakhtiniada.ru/2411-8729/article/view/267497
- DOI: https://doi.org/10.17816/fm16167
- ID: 267497
如何引用文章
全文:
详细
法医 DNA 数据库对犯罪侦查有很大的帮助,它们可以在已经有个人的 STR 图谱信息的条件下识别留下生物痕迹的人。对于身份不明的尸体也是如此。当数据库中没有这些信息时,DNA 表型分析可以提供帮助,这种方法可以根据 DNA 重建一个人的外貌,目前已在法医实践中使用。在确定头发颜色、眼睛颜色、皮肤色素沉着和其他一些特征方面取得的进展最大。但是,人们最关心的是一个人的面容,尽管已经取得了一些成功,但这还不是最好的情况。主要的问题是,面部特征是由多种基因造成的,同时存在基因多效性。全基因组关联研究(GWAS)这种方法的出现,使得同时分析许多基因位点,寻找与某些参与人脸形成的基因相关的单核苷酸置换成为可能。然而,对每个人的两个父系和母系遗传基因组(或外显子组)进行测序,并对其序列进行分阶段单倍型组装,可以获得更多信息。对于这种方法而言,正确选择对象的形式是必要的,即更多的同貌人及其近亲,因为不是亲属的同貌人有可能携带相同的核苷酸替换,这在许多方面决定了他们的外部相似性。另一个群体应该是子女与其父母非常相似的家庭,在这种情况下,有必要进行三测序,并对其二倍体基因组(外显子组)进行分阶段组装。如果对通过这种方式获得的遗传信息在机器学习和人工智能的帮助下进行处理,将有可能“找到”正确的基因,从而提高这种 DNA 画肖像的可靠性。
作者简介
Alexey V. Chemeris
Ufa University of Science and Technology
Email: chemeris@anrb.ru
ORCID iD: 0000-0002-8917-0449
SPIN 代码: 1248-2582
教授、生物科學博士、法學院犯罪學系教授
俄罗斯联邦, UfaAirat A. Khalikov
Bashkir State Medical Universit
Email: airat.expert@mail.ru
ORCID iD: 0000-0003-1045-5677
SPIN 代码: 1895-7300
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, UfaRavil R. Garafutdinov
Ufa University of Science and Technology
Email: garafutdinovr@mail.ru
ORCID iD: 0000-0001-9087-7364
SPIN 代码: 3434-2630
Cand. Sci. (Biological)
俄罗斯联邦, UfaDmitry A. Chemeris
GENVED LLC
Email: dch@dch.ru.net
ORCID iD: 0009-0003-6407-5001
SPIN 代码: 5190-9790
俄羅斯聯邦莫斯科「GENVED」有限責任公司總經理
俄罗斯联邦, MoscowAssol R. Sakhabutdinova
Institute of Biochemistry and Genetics, Ufa Federal Research Centre
Email: sakhabutdinova@rambler.ru
ORCID iD: 0000-0001-8797-4702
SPIN 代码: 7172-7141
Cand. Sci. (Biological)
俄罗斯联邦, UfaAigul F. Khaliullina
Ufa University of Science and Technology
Email: aigul229@mail.ru
ORCID iD: 0009-0003-4193-2832
SPIN 代码: 7448-6130
Cand. Sci. (Legal), Assistant Professor
俄罗斯联邦, UfaRushan R. Galyautdinov
Ufa University of Science and Technology
Email: rushan-94@mail.ru
ORCID iD: 0000-0002-1205-7608
SPIN 代码: 8322-7325
Cand. Sci. (Legal)
俄罗斯联邦, UfaRafael H. Sagidullin
Ufa University of Science and Technology
Email: sagidullin12@mail.ru
ORCID iD: 0000-0002-5721-8831
SPIN 代码: 7970-8831
MD, Cand. Sci. (Medicine)
俄罗斯联邦, UfaFarit G. Aminev
Ufa University of Science and Technology
编辑信件的主要联系方式.
Email: faminev@mail.ru
ORCID iD: 0000-0003-4031-4103
SPIN 代码: 5527-5110
Dr. Sci. (Legal), Professor
俄罗斯联邦, Ufa参考
- Chemeris AV, Aminev FG, Garafutdinov RR, et al. DNA criminalistics. Moscow: Nauka; 2022. 466 р. (In Russ). EDN: FVXBBD
- Dabas P, Jain S, Khajuria H, Nayak BP. Forensic DNA phenotyping: Inferring phenotypic traits from crime scene DNA. J Forensic Leg Med. 2022;88:102351. EDN: VQNDST doi: 10.1016/j.jflm.2022.102351
- Kayser M, Branicki W, Parson W, Phillips C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci Int Genet. 2023;65:102870. EDN: FBGHRP doi: 10.1016/j.fsigen.2023.102870
- Wang Z, Fu G, Ma G, et al. The association between DNA methylation and human height and a prospective model of DNA methylation-based height prediction. Hum Genet. 2024;143(3):401–421. EDN: GHIREU doi: 10.1007/s00439-024-02659-0
- Wolinsky H. CSI on steroids: DNA-based phenotyping is helping police derive visual information from crime scene samples to aid in the hunt for suspects. EMBO Rep. 2015;16(7):782–786. doi: 10.15252/embr.201540714
- Arnold C. The controversial company using DNA to sketch the faces of criminals. Nature. 2020;585(7824):178–181. doi: 10.1038/d41586-020-02545-5
- Pulker H, Lareu MV, Phillips C, Carracedo A. Finding genes that underlie physical traits of forensic interest using genetic tools. Forensic Sci Int Genet. 2007;1(2):100–104. doi: 10.1016/j.fsigen.2007.02.009
- Frudakis T. Molecular photofitting: Predicting ancestry and phenotype using DNA. Chapter 1: Forensic DNA analysis from modest beginnings to molecular photofitting genics genetics genomics and the pertinent population genetics principles. Elsevier; 2010. P. 1–34.
- Stephan CN, Caple JM, Guyomarch P, Claes P. An Overview of the latest developments in facial imaging. Forensic Sci Res. 2019;4(1):10–28. EDN: WWXGOA doi: 10.1080/20961790.2018.1519892
- Walsh S, Liu F, Ballantyne KN, et al. IrisPlex: A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci Int Genet. 2011;5(3):170–180. EDN: OLPRVB doi: 10.1016/j.fsigen.2010.02.004
- Walsh S, Wollstein A, Liu F, et al. DNA-based eye colour prediction across Europe with the IrisPlex system. Forensic Sci Int Genet. 2012;6(3):330–340. doi: 10.1016/j.fsigen.2011.07.009
- Stacey G, Bolton B, Doyle A, Griffiths B. DNA fingerprinting: A valuable new technique for the characterisation of cell lines. Cytotechnology. 1992;9(1-3):211–216. EDN: NXPZFZ doi: 10.1007/BF02521748
- Butler JM. Recent developments in Y-short tandem repeat and Y-single nucleotide polymorphism analysis. Forensic Sci Rev. 2003;15(2):91–111.
- Yu W, Zhu M, Wang N, et al. An efficient transformer based on global and local self-attention for face photo-sketch synthesis. IEEE Trans Image Process. 2023;22:483–495. EDN: TQJGWL doi: 10.1109/TIP.2022.3229614
- Soares C. Portrait in DNA. Sci Am. 2010;302(5):14–17. doi: 10.1038/scientificamerican0510-14
- Pośpiech E, Teisseyre P, Mielniczuk J, Branicki W. Predicting physical appearance from DNA data-towards genomic solutions. Genes (Basel). 2022;13(1):121. EDN: FHZXGC doi: 10.3390/genes13010121
- Butorina IV, Kosarev SYu. To the question of ‘genomic portrait’ as a method of exposing criminals. In: Materials of scientific conference with international participation: «Nedelya nauki Sankt-Peterburgskogo politekhnicheskogo universiteta Petra Velikogo», Nov, 13–19. Saint Peterburg; 2017. Р. 403–405. (In Russ). EDN: ORTLMB
- Takeuchi T, Suzuki Y, Watabe S, et al. A high-quality, haplotype-phased genome reconstruction reveals unexpected haplotype diversity in a pearl oyster. DNA Res. 2022;29(6):dsac035. EDN: YPMRLY doi: 10.1093/dnares/dsac035
- Christiansen L, Amini S, Zhang F, et al. Contiguity-preserving transposition sequencing (CPT-Seq) for genome-wide haplotyping, assembly, and single-cell ATAC-Seq. Methods Mol Biol. 2017;1551:207–221. doi: 10.1007/978-1-4939-6750-6_12
- Chemeris DA, Kuluev BR, Patrushev MV, et al. Progress in sequencing of the complete haplotyperesolved diploid genomes of plants. Biomics. 2023;15(4):279–309. EDN: ZCPOMK doi: 10.31301/2221-6197.bmcs.2023-26
- Venter JC. Multiple personal genomes await. Nature. 2010;464(7289):676–677. doi: 10.1038/464676a
- Jarvis ED, Formenti G, Rhie A, et al.; Human Pangenome Reference Consortium. Semi-automated assembly of high-quality diploid human reference genomes. Nature. 2022;611(7936):519–531. doi: 10.1038/s41586-022-05325-5
- Yang C, Zhou Y, Song Y, et al. The complete and fully-phased diploid genome of a male Han Chinese. Cell Res. 2023;33(10):745–761. EDN: OCELEC doi: 10.1038/s41422-023-00849-5
- Porubsky D, Vollger MR, Harvey WT, et al.; Human Pangenome Reference Consortium. Gaps and complex structurally variant loci in phased genome assemblies. Genome Res. 2023;33(4):496–510. EDN: FFXMYI doi: 10.1101/gr.277334.122
- Kuluev BR, Baymiev AnKh, Gerashchenkov GA, et al. One hundred years of haploid genomes. Now time comes for diploid genomes. Biomics. 2020;12(4):411–434. (In Russ). EDN: WOZCTG doi: 10.31301/2221-6197.bmcs.2020-33
- Richmond S, Howe LJ, Lewis S, et al. Facial genetics: A brief overview. Front Genet. 2018;9:462. EDN: UTHSTN doi: 10.3389/fgene.2018.00462
- Liu F, van der Lijn F, Schurmann C, et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 2012;8(9):e1002932. doi: 10.1371/journal.pgen.1002932
- Paternoster L, Zhurov AI, Toma AM, et al. Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position. Am J Hum Genet. 2012;90(3):478–485. doi: 10.1016/j.ajhg.2011.12.021
- Claes P, Shriver MD. Establishing a multidisciplinary context for modeling 3D facial shape from DNA. PLoS Genet. 2014;10(11):e1004725. EDN: UUGMIX doi: 10.1371/journal.pgen.1004725
- Fagertun J, Wolffhechel K, Pers TH, et al. Predicting facial characteristics from complex polygenic variations. Forensic Sci Int Genet. 2015;19:263–268. doi: 10.1016/j.fsigen.2015.08.004
- Claes P, Shriver MD. New entries in the lottery of facial GWAS discovery. PLoS Genet. 2016;12(8):e1006250. doi: 10.1371/journal.pgen.1006250
- Qiao L, Yang Y, Fu P, et al. Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction. J Genet Genomics. 2018;45(8):419–432. doi: 10.1016/j.jgg.2018.07.009
- Xiong Z, Dankova G, Howe LJ, et al.; International visible trait genetics (VisiGen) consortium. Novel genetic loci affecting facial shape variation in humans. Elife. 2019;8:e49898. doi: 10.7554/eLife.49898
- White JD, Indencleef K, Naqvi S, et al. Insights into the genetic architecture of the human face. Nat Genet. 2021;53(1):45–53. EDN: RZPCXH doi: 10.1038/s41588-020-00741-7
- Zhang M, Wu S, Du S, et al. Genetic variants underlying differences in facial morphology in East Asian and European populations. Nat Genet. 2022;54(4):403–411. EDN: LYJLSC doi: 10.1038/s41588-022-01038-7
- Adhikari K, Reales G, Smith AJ, et al. A genome-wide association study identifies multiple loci for variation in human ear morphology. Nat Commun. 2015;6:7500. EDN: XQFDRF doi: 10.1038/ncomms8500
- Noreen S, Ballard D, Mehmood T, et al. Evaluation of loci to predict ear morphology using two SNaPshot assays. Forensic Sci Med Pathol. 2023;19(3):335–356. EDN: MORVPQ doi: 10.1007/s12024-022-00545-7
- Ueki M, Takeshita H, Fujihara J, et al. Simple screening method for copy number variations associated with physical features. Leg Med (Tokyo). 2017;25:71–74. doi: 10.1016/j.legalmed.2017.01.006
- Weinberg SM, Roosenboom J, Shaffer JR, et al. Hunting for genes that shape human faces: Initial successes and challenges for the future. Orthod Craniofac Res. 2019;22(Suppl 1):207–212. doi: 10.1111/ocr.12268
- Naqvi S, Hoskens H, Wilke F, et al. Decoding the human face: Progress and challenges in understanding the genetics of craniofacial morphology. Annu Rev Genomics Hum Genet. 2022;23(1):383–412. EDN: ZUSQMT doi: 10.1146/annurev-genom-120121-102607
- Alshehhi A, Almarzooqi A, Alhammadi K, et al. Advancement in human face prediction using DNA. Genes (Basel). 2023;14(1):136. EDN: IJGMFL doi: 10.3390/genes14010136
- Hoskens H, Liu D, Naqvi S, et al. 3D facial phenotyping by biometric sibling matching used in contemporary genomic methodologies. PLoS Genet. 2021;17(5):e1009528. doi: 10.1371/journal.pgen.1009528
- Crouch DJ, Winney B, Koppen WP, et al. Genetics of the human face: Identification of large-effect single gene variants. Proc Natl Acad Sci USA. 2018;115(4):E676–E685. EDN: YEVKIX doi: 10.1073/pnas.1708207114
- Joshi RS, Rigau M, García-Prieto CA, et al. Look-alike humans identified by facial recognition algorithms show genetic similarities. Cell Rep. 2022;40(8):111257. EDN: VXOVUG doi: 10.1016/j.celrep.2022.111257
- Wu W, Zhai G, Xu Z, et al. Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese. Hum Genet. 2019;138(6):601–611. EDN: CNXYPC doi: 10.1007/s00439-019-02008-6
补充文件
