Genetic problems of DNA portrait as part of DNA phenotyping: A review
- Authors: Chemeris A.V.1, Khalikov A.A.2, Garafutdinov R.R.1, Chemeris D.A.3, Sakhabutdinova A.R.4, Khaliullina A.F.1, Galyautdinov R.R.1, Sagidullin R.H.1, Aminev F.G.1
-
Affiliations:
- Ufa University of Science and Technology
- Bashkir State Medical Universit
- GENVED LLC
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre
- Issue: Vol 10, No 3 (2024)
- Pages: 398-410
- Section: Reviews
- URL: https://bakhtiniada.ru/2411-8729/article/view/267497
- DOI: https://doi.org/10.17816/fm16167
- ID: 267497
Cite item
Full Text
Abstract
Forensic DNA databases are beneficial for investigating crimes and allow identifying a person using biological traces, provided that information about him/her is already available in the form of a short tandem repeat profile. The same is true for unidentified corpses. When such information is missing from the database, DNA phenotyping can be used. A person’s appearance can be reconstructed based on his DNA, which is already a finding application in forensic practice. Considerable progress is achieved when the hair and eye color, skin pigmentation, and some other features are established. However, the main interest is in the human face. However, developments in this area are limited. The main issue is that multiple genes are responsible for facial features, including a pleiotropic effect. The emergence of such a method such as genome-wide association study made it possible to analyze many gene loci at once for the presence of single-nucleotide substitutions associated with certain genes involved in the formation of a person’s face. However, sequencing of two genomes (or exomes) of each person inherited from the father and mother with phased haplotype assembly of their sequences can be more informative. With this approach, the accurate selection of objects in the form of a large number of twins and their closest relatives is critical, because twins may carry the same nucleotide substitutions, which largely determine their external similarity. Another cohort should be families in which children are very similar to their parents. In this case, it is crucial to conduct triosequencing with phased assembly of their diploid genomes (exomes). Genetic information obtained in this way, which is processed using machine learning and artificial intelligence, allow us to “reach” the necessary genes, increasing the reliability of such DNA portraits.
Full Text
##article.viewOnOriginalSite##About the authors
Alexey V. Chemeris
Ufa University of Science and Technology
Email: chemeris@anrb.ru
ORCID iD: 0000-0002-8917-0449
SPIN-code: 1248-2582
Dr. Sci. (Biological), Professor
Russian Federation, UfaAirat A. Khalikov
Bashkir State Medical Universit
Email: airat.expert@mail.ru
ORCID iD: 0000-0003-1045-5677
SPIN-code: 1895-7300
MD, Dr. Sci. (Medicine), Professor
Russian Federation, UfaRavil R. Garafutdinov
Ufa University of Science and Technology
Email: garafutdinovr@mail.ru
ORCID iD: 0000-0001-9087-7364
SPIN-code: 3434-2630
Cand. Sci. (Biological)
Russian Federation, UfaDmitry A. Chemeris
GENVED LLC
Email: dch@dch.ru.net
ORCID iD: 0009-0003-6407-5001
SPIN-code: 5190-9790
Cand. Sci. (Biological)
Russian Federation, MoscowAssol R. Sakhabutdinova
Institute of Biochemistry and Genetics, Ufa Federal Research Centre
Email: sakhabutdinova@rambler.ru
ORCID iD: 0000-0001-8797-4702
SPIN-code: 7172-7141
Cand. Sci. (Biological)
Russian Federation, UfaAigul F. Khaliullina
Ufa University of Science and Technology
Email: aigul229@mail.ru
ORCID iD: 0009-0003-4193-2832
SPIN-code: 7448-6130
Cand. Sci. (Legal), Assistant Professor
Russian Federation, UfaRushan R. Galyautdinov
Ufa University of Science and Technology
Email: rushan-94@mail.ru
ORCID iD: 0000-0002-1205-7608
SPIN-code: 8322-7325
Cand. Sci. (Legal)
Russian Federation, UfaRafael H. Sagidullin
Ufa University of Science and Technology
Email: sagidullin12@mail.ru
ORCID iD: 0000-0002-5721-8831
SPIN-code: 7970-8831
MD, Cand. Sci. (Medicine)
Russian Federation, UfaFarit G. Aminev
Ufa University of Science and Technology
Author for correspondence.
Email: faminev@mail.ru
ORCID iD: 0000-0003-4031-4103
SPIN-code: 5527-5110
Dr. Sci. (Legal), Professor
Russian Federation, UfaReferences
- Chemeris AV, Aminev FG, Garafutdinov RR, et al. DNA criminalistics. Moscow: Nauka; 2022. 466 р. (In Russ). EDN: FVXBBD
- Dabas P, Jain S, Khajuria H, Nayak BP. Forensic DNA phenotyping: Inferring phenotypic traits from crime scene DNA. J Forensic Leg Med. 2022;88:102351. EDN: VQNDST doi: 10.1016/j.jflm.2022.102351
- Kayser M, Branicki W, Parson W, Phillips C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci Int Genet. 2023;65:102870. EDN: FBGHRP doi: 10.1016/j.fsigen.2023.102870
- Wang Z, Fu G, Ma G, et al. The association between DNA methylation and human height and a prospective model of DNA methylation-based height prediction. Hum Genet. 2024;143(3):401–421. EDN: GHIREU doi: 10.1007/s00439-024-02659-0
- Wolinsky H. CSI on steroids: DNA-based phenotyping is helping police derive visual information from crime scene samples to aid in the hunt for suspects. EMBO Rep. 2015;16(7):782–786. doi: 10.15252/embr.201540714
- Arnold C. The controversial company using DNA to sketch the faces of criminals. Nature. 2020;585(7824):178–181. doi: 10.1038/d41586-020-02545-5
- Pulker H, Lareu MV, Phillips C, Carracedo A. Finding genes that underlie physical traits of forensic interest using genetic tools. Forensic Sci Int Genet. 2007;1(2):100–104. doi: 10.1016/j.fsigen.2007.02.009
- Frudakis T. Molecular photofitting: Predicting ancestry and phenotype using DNA. Chapter 1: Forensic DNA analysis from modest beginnings to molecular photofitting genics genetics genomics and the pertinent population genetics principles. Elsevier; 2010. P. 1–34.
- Stephan CN, Caple JM, Guyomarch P, Claes P. An Overview of the latest developments in facial imaging. Forensic Sci Res. 2019;4(1):10–28. EDN: WWXGOA doi: 10.1080/20961790.2018.1519892
- Walsh S, Liu F, Ballantyne KN, et al. IrisPlex: A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci Int Genet. 2011;5(3):170–180. EDN: OLPRVB doi: 10.1016/j.fsigen.2010.02.004
- Walsh S, Wollstein A, Liu F, et al. DNA-based eye colour prediction across Europe with the IrisPlex system. Forensic Sci Int Genet. 2012;6(3):330–340. doi: 10.1016/j.fsigen.2011.07.009
- Stacey G, Bolton B, Doyle A, Griffiths B. DNA fingerprinting: A valuable new technique for the characterisation of cell lines. Cytotechnology. 1992;9(1-3):211–216. EDN: NXPZFZ doi: 10.1007/BF02521748
- Butler JM. Recent developments in Y-short tandem repeat and Y-single nucleotide polymorphism analysis. Forensic Sci Rev. 2003;15(2):91–111.
- Yu W, Zhu M, Wang N, et al. An efficient transformer based on global and local self-attention for face photo-sketch synthesis. IEEE Trans Image Process. 2023;22:483–495. EDN: TQJGWL doi: 10.1109/TIP.2022.3229614
- Soares C. Portrait in DNA. Sci Am. 2010;302(5):14–17. doi: 10.1038/scientificamerican0510-14
- Pośpiech E, Teisseyre P, Mielniczuk J, Branicki W. Predicting physical appearance from DNA data-towards genomic solutions. Genes (Basel). 2022;13(1):121. EDN: FHZXGC doi: 10.3390/genes13010121
- Butorina IV, Kosarev SYu. To the question of ‘genomic portrait’ as a method of exposing criminals. In: Materials of scientific conference with international participation: «Nedelya nauki Sankt-Peterburgskogo politekhnicheskogo universiteta Petra Velikogo», Nov, 13–19. Saint Peterburg; 2017. Р. 403–405. (In Russ). EDN: ORTLMB
- Takeuchi T, Suzuki Y, Watabe S, et al. A high-quality, haplotype-phased genome reconstruction reveals unexpected haplotype diversity in a pearl oyster. DNA Res. 2022;29(6):dsac035. EDN: YPMRLY doi: 10.1093/dnares/dsac035
- Christiansen L, Amini S, Zhang F, et al. Contiguity-preserving transposition sequencing (CPT-Seq) for genome-wide haplotyping, assembly, and single-cell ATAC-Seq. Methods Mol Biol. 2017;1551:207–221. doi: 10.1007/978-1-4939-6750-6_12
- Chemeris DA, Kuluev BR, Patrushev MV, et al. Progress in sequencing of the complete haplotyperesolved diploid genomes of plants. Biomics. 2023;15(4):279–309. EDN: ZCPOMK doi: 10.31301/2221-6197.bmcs.2023-26
- Venter JC. Multiple personal genomes await. Nature. 2010;464(7289):676–677. doi: 10.1038/464676a
- Jarvis ED, Formenti G, Rhie A, et al.; Human Pangenome Reference Consortium. Semi-automated assembly of high-quality diploid human reference genomes. Nature. 2022;611(7936):519–531. doi: 10.1038/s41586-022-05325-5
- Yang C, Zhou Y, Song Y, et al. The complete and fully-phased diploid genome of a male Han Chinese. Cell Res. 2023;33(10):745–761. EDN: OCELEC doi: 10.1038/s41422-023-00849-5
- Porubsky D, Vollger MR, Harvey WT, et al.; Human Pangenome Reference Consortium. Gaps and complex structurally variant loci in phased genome assemblies. Genome Res. 2023;33(4):496–510. EDN: FFXMYI doi: 10.1101/gr.277334.122
- Kuluev BR, Baymiev AnKh, Gerashchenkov GA, et al. One hundred years of haploid genomes. Now time comes for diploid genomes. Biomics. 2020;12(4):411–434. (In Russ). EDN: WOZCTG doi: 10.31301/2221-6197.bmcs.2020-33
- Richmond S, Howe LJ, Lewis S, et al. Facial genetics: A brief overview. Front Genet. 2018;9:462. EDN: UTHSTN doi: 10.3389/fgene.2018.00462
- Liu F, van der Lijn F, Schurmann C, et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 2012;8(9):e1002932. doi: 10.1371/journal.pgen.1002932
- Paternoster L, Zhurov AI, Toma AM, et al. Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position. Am J Hum Genet. 2012;90(3):478–485. doi: 10.1016/j.ajhg.2011.12.021
- Claes P, Shriver MD. Establishing a multidisciplinary context for modeling 3D facial shape from DNA. PLoS Genet. 2014;10(11):e1004725. EDN: UUGMIX doi: 10.1371/journal.pgen.1004725
- Fagertun J, Wolffhechel K, Pers TH, et al. Predicting facial characteristics from complex polygenic variations. Forensic Sci Int Genet. 2015;19:263–268. doi: 10.1016/j.fsigen.2015.08.004
- Claes P, Shriver MD. New entries in the lottery of facial GWAS discovery. PLoS Genet. 2016;12(8):e1006250. doi: 10.1371/journal.pgen.1006250
- Qiao L, Yang Y, Fu P, et al. Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction. J Genet Genomics. 2018;45(8):419–432. doi: 10.1016/j.jgg.2018.07.009
- Xiong Z, Dankova G, Howe LJ, et al.; International visible trait genetics (VisiGen) consortium. Novel genetic loci affecting facial shape variation in humans. Elife. 2019;8:e49898. doi: 10.7554/eLife.49898
- White JD, Indencleef K, Naqvi S, et al. Insights into the genetic architecture of the human face. Nat Genet. 2021;53(1):45–53. EDN: RZPCXH doi: 10.1038/s41588-020-00741-7
- Zhang M, Wu S, Du S, et al. Genetic variants underlying differences in facial morphology in East Asian and European populations. Nat Genet. 2022;54(4):403–411. EDN: LYJLSC doi: 10.1038/s41588-022-01038-7
- Adhikari K, Reales G, Smith AJ, et al. A genome-wide association study identifies multiple loci for variation in human ear morphology. Nat Commun. 2015;6:7500. EDN: XQFDRF doi: 10.1038/ncomms8500
- Noreen S, Ballard D, Mehmood T, et al. Evaluation of loci to predict ear morphology using two SNaPshot assays. Forensic Sci Med Pathol. 2023;19(3):335–356. EDN: MORVPQ doi: 10.1007/s12024-022-00545-7
- Ueki M, Takeshita H, Fujihara J, et al. Simple screening method for copy number variations associated with physical features. Leg Med (Tokyo). 2017;25:71–74. doi: 10.1016/j.legalmed.2017.01.006
- Weinberg SM, Roosenboom J, Shaffer JR, et al. Hunting for genes that shape human faces: Initial successes and challenges for the future. Orthod Craniofac Res. 2019;22(Suppl 1):207–212. doi: 10.1111/ocr.12268
- Naqvi S, Hoskens H, Wilke F, et al. Decoding the human face: Progress and challenges in understanding the genetics of craniofacial morphology. Annu Rev Genomics Hum Genet. 2022;23(1):383–412. EDN: ZUSQMT doi: 10.1146/annurev-genom-120121-102607
- Alshehhi A, Almarzooqi A, Alhammadi K, et al. Advancement in human face prediction using DNA. Genes (Basel). 2023;14(1):136. EDN: IJGMFL doi: 10.3390/genes14010136
- Hoskens H, Liu D, Naqvi S, et al. 3D facial phenotyping by biometric sibling matching used in contemporary genomic methodologies. PLoS Genet. 2021;17(5):e1009528. doi: 10.1371/journal.pgen.1009528
- Crouch DJ, Winney B, Koppen WP, et al. Genetics of the human face: Identification of large-effect single gene variants. Proc Natl Acad Sci USA. 2018;115(4):E676–E685. EDN: YEVKIX doi: 10.1073/pnas.1708207114
- Joshi RS, Rigau M, García-Prieto CA, et al. Look-alike humans identified by facial recognition algorithms show genetic similarities. Cell Rep. 2022;40(8):111257. EDN: VXOVUG doi: 10.1016/j.celrep.2022.111257
- Wu W, Zhai G, Xu Z, et al. Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese. Hum Genet. 2019;138(6):601–611. EDN: CNXYPC doi: 10.1007/s00439-019-02008-6
Supplementary files
