Связь между судебно-медицинской экспертизой ДНК и судебной одонтологией при идентификации личности в случаях массовой гибели людей: систематический обзор
- Авторы: Lopez Toribio R.1, Castañeda Eugenio N.1, Manrique de Lara Suarez D.1
-
Учреждения:
- Национальный университет Эрмилио Вальдизан
- Выпуск: Том 10, № 3 (2024)
- Страницы: 372-397
- Раздел: Систематические обзоры
- URL: https://bakhtiniada.ru/2411-8729/article/view/267496
- DOI: https://doi.org/10.17816/fm16148
- ID: 267496
Цитировать
Аннотация
Обоснование. Согласно литературным данным, судебная одонтология является одним из наиболее эффективных и доступных научных методов идентификации жертв массовых бедствий. В данном исследовании рассматриваются роль и функции судебных одонтологов, участвовавших в расследовании нескольких крупных массовых бедствий. Проведение судебно-медицинской экспертизы ДНК в одонтологии обусловлено её важностью при идентификации жертв массовых бедствий. Поскольку уровень преступности продолжает расти, область судебной медицины претерпела значительные изменения. Судебные стоматологи играют ключевую роль в различных областях исследования места преступления, помогая тем самым раскрывать многочисленные случаи гибели людей.
Цель работы — расширение базы знаний для будущих исследований в области судебной одонтологии путём проведения систематического обзора публикаций, связанных с судебно-медицинской экспертизой ДНК методами одонтологи для идентификации жертв массовых бедствий.
Материалы и методы. Поиск публикаций осуществлялся до февраля 2024 года в базах данных Google Scholar, PubMed, Scopus, Embase, Web of Science и ScienceDirect. Отбор научных работ выполняли в соответствии с чек-листом PRISMA.
Результаты. Всего было отобрано 16 (100%) исследований, посвящённых судебно-медицинской экспертизе ДНК, проводимой на образцах, взятых у жертв массовых бедствий, из них только 7 (43,75%) статей связаны с анализом ДНК зубов. Из 4808 статей было исключено 138 дубликатов или публикаций, не относящихся к теме исследования. После полнотекстового обзора было отобрано 7 работ, соответстовавших критериям включения. Наибольшее количество жертв было идентифицировано путём выделения ДНК из образцов зубов. В нескольких исследованиях авторам не удалось выполнить полное ДНК-профилирование с учётом применяемого метода извлечения ДНК.
Заключение. Анализ ДНК сыграл важную роль в идентификации жертв нескольких массовых бедствий по всему миру. Несмотря на тот факт, что зубы человека являются отличным источником ДНК, в будущем будет полезным провести ряд исследований с бÓльшим размером выборки и соответствующими контрольными группами с использованием стандартизированных методов извлечения ДНК.
Полный текст
Открыть статью на сайте журналаОб авторах
R.M. Lopez Toribio
Национальный университет Эрмилио Вальдизан
Автор, ответственный за переписку.
Email: miolopeztoribio@hotmail.com
ORCID iD: 0009-0001-3367-4920
магистр судебной медицины
Перу, УанукоN.E. Castañeda Eugenio
Национальный университет Эрмилио Вальдизан
Email: ncastaneda@unheval.edu.pe
ORCID iD: 0000-0002-3016-663X
MD
Перу, УанукоD.A. Manrique de Lara Suarez
Национальный университет Эрмилио Вальдизан
Email: dmanrique@unheval.edu.pe
ORCID iD: 0000-0003-4488-252X
MD
Перу, УанукоСписок литературы
- Nathan M.D., Sakthi D.S. Dentistry and mass disaster: A review // J Clin Diagn Res. 2014. Vol. 8, N 7. P. ZE01-3. doi: 10.7860/JCDR/2014/7282.4573
- Harris H.A., Lee H.C. Introduction to forensic science and criminalistics. CRC Press, 2019. 446 р. doi: 10.4324/9781315119175
- Acharya A.B. Role of forensic odontology in disaster victim identification in the Indian context // J Dent Specialities. 2015. Vol. 3, N 1. P. 1–3.
- Sakari S.L., Jimson S., Masthan K.M., Jacobina J. Role of DNA profiling in forensic odontology // J Pharm Bioallied Sci. 2015. Vol. 7, Suppl. 1. P. S138–141. doi: 10.4103/0975-7406.155863
- Manjunath B.C., Chandrashekar B.R., Mahesh M., Rani R.M. DNA profiling and forensic dentistry: A review of the recent concepts and trends // J Forensic Leg Med. 2011. Vol. 18, N 5. P. 191–197. doi: 10.1016/j.jflm.2011.02.005
- Sweet D. Why a dentist for identification? // Dent Clin North Am. 2001. Vol. 45, N 2. P. 237–251. doi: 10.1016/S0011-8532(22)01760-8
- Sujatha G., Priya V.V., Dubey A., et al. Toothbrushes as a source of DNA for gender and human identification: A systematic review // Int J Environ Res Public Health. 2021. Vol. 18, N 21. P. 11182. doi: 10.3390/ijerph182111182
- Mayall S.S., Agarwal P., Vashisth P. Dental DNA fingerprinting in identification of human remains // Ann Dent Spec. 2013. Vol. 1, N 1. P. 16–19.
- Sweet D. Forensic dental identification // Forensic Sci Int. 2010. Vol. 201, N 1-3. P. 3–4. doi: 10.1016/j.forsciint.2010.02.030
- Pittayapat P., Jacobs R., de Valck E., et al. Forensic odontology in the disaster victim identification process // J Forensic Odontostomatol. 2012. Vol. 30, N 1. P. 1–12.
- Waleed P., Baba F., Alsulami S., Tarakji B. Importance of dental records in forensic dental identification // Acta Inform Med. 2015. Vol. 23, N 1. P. 49–52. doi: 10.5455/aim.2015.23.49-52
- Jobim M.R., Gamio F., Ewald G., et al. Human identification using DNA purified from residues in used toothbrushes // Int Congr Ser. 2004. Vol. 1261. P. 491–493. doi: 10.1016/j.ics.2003.11.013
- Jeffreys A.J., Wilson V., Thein S.L. Individual-specific “fingerprints” of human DNA // Nature. 1985. Vol. 316, N 6023. P. 76–79. doi: 10.1038/316076a0
- Maffeo C., Yoo J., Comer J., et al. Close encounters with DNA // J Phys Condens Matter. 2014. Vol. 26, N 41. P. 413101. doi: 10.1088/0953-8984/26/41/413101
- Mansueto G., Benincasa G., Della Mura N., et al. Epigenetic-sensitive liquid biomarkers and personalised therapy in advanced heart failure: A focus on cell-free DNA and microRNAs // J Clin Pathol. 2020. Vol. 73, N 9. P. 535–543. doi: 10.1136/jclinpath-2019-206404
- Van Oorschot R.A., Ballantyne K.N., Mitchell R.J. Forensic trace DNA: A review // Investig Genet. 2010. Vol. 1, N 1. P. 14. doi: 10.1186/2041-2223-1-14
- Butler J.M. The future of forensic DNA analysis // Philos Trans R Soc Lond B Biol Sci. 2015. Vol. 370, N 1674. P. 20140252. doi: 10.1098/rstb.2014.0252
- Buckleton J., Triggs C., Clayton T. In: Buckleton J., Triggs C.M., Walsh S.J., ed. Disaster victim identification, identification of missing persons, and immigration cases in forensic DNA evidence interpretation. CRC Press Washington, D.C., 2005. P. 406–408. doi: 10.1201/9781420037920.ch11
- Luntz L.L. History of forensic dentistry // Dent Clin North Am. 1977. Vol. 21, N 1. P. 7–17. doi: 10.1016/S0011-8532(22)00887-4
- Neville B.W., Douglas D., Allen C.M., Bouquot J. Forensic dentistry. In: Neville B.W., editor. Oral & maxillofacial pathology. Philadelphia (PA): W.B. Saunders, 2002. P. 763–783.
- Cumpston M.S., McKenzie J.E., Welch V.A., Brennan S.E. Strengthening systematic reviews in public health: Guidance in the Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed. // J Public Health (Oxf). 2022. Vol. 44, N 4. P. e588–e592. doi: 10.1093/pubmed/fdac036
- Page M.J., McKenzie J.E., Bossuyt P.M., et al. The prisma 2020 statement: An updated guideline for reporting systematic reviews // BMJ. 2021. Vol. 372. P. n71. doi: 10.1136/bmj.n71
- Bastiaan R.J. Dental identification of the Victorian bushfire victims // Aust Dent J. 1984. Vol. 29, N 2. P. 105–110. doi: 10.1111/j.1834-7819.1984.tb06044.x
- Hsu C.M., Huang N.E., Tsai L.C., et al. Identification of victims of the 1998 taoyuan airbus crash accident using DNA analysis // Int J Legal Med. 1999. Vol. 113, N 1. P. 43–46. doi: 10.1007/s004140050277
- Nambiar P., Jalil N., Singh B. The dental identification of victims of an aircraft accident in Malaysia // Int Dent J. 1997. Vol. 47, N 1. P. 9–15. doi: 10.1111/j.1875-595x.1997.tb00671.x
- Bux R., Heidemann D., Enders M., Bratzke H. The value of examination aids in victim identification: A retrospective study of an airplane crash in Nepal in 2002 // Forensic Sci Int. 2006. Vol. 164, N 2-3. P. 155–158. doi: 10.1016/j.forsciint.2005.12.025
- Schuller-Götzburg P., Suchanek J. Forensic odontologists successfully identify tsunami victims in Phuket, Thailand // Forensic Sci Int. 2007. Vol. 171, N 2-3. P. 204–207. doi: 10.1016/j.forsciint.2006.08.013
- Tan P.H., Wee K.P., Sahelangi P. Remembering the Musi: Silk Air Flight MI 185 crash victim identification // Ann Acad Med Singapore. 2007. Vol. 36, N 10. P. 861–866. doi: 10.47102/annals-acadmedsg.V36N10p861
- Prieto J.L., Tortosa C., Bedate A., et al. The 11 March 2004 Madrid terrorist attacks: The importance of the mortuary organisation for identification of victims. A critical review // Int J Legal Med. 2007. Vol. 121, N 6. P. 517–522. doi: 10.1007/s00414-007-0196-0
- Hinchliffe J. Forensic odontology. Part 3. The Australian bushfires: Victoria state, February 2009 // Br Dent J. 2011. Vol. 210, N 7. P. 317–321. doi: 10.1038/sj.bdj.2011.239
- Trengrove H. Operation earthquake 2011: Christchurch earthquake disaster victim identification // J Forensic Odontostomatol. 2011. Vol. 29, N 2. P. 1–7.
- Bush M., Miller R. The crash of colgan air flight 3407: Advanced techniques in victim identification // J Am Dent Assoc. 2011. Vol. 142, N 12. P. 1352–1356. doi: 10.14219/jada.archive.2011.0135
- Manhart J., Bittorf A., Buttner A. Disaster victim identification-experiences of the «Autobahn A19» disaster // Forensic Sci Med Pathol. 2012. Vol. 8, N 2. P. 118–124. doi: 10.1007/s12024-011-9307-9
- Barbería E., Martin-Fumadó C., Galtés I., et al. Managing the identification of the mortal victims run over by a train in the Castelldefels railway accident (Barcelona) // Leg Med (Tokyo). 2015. Vol. 17, N 5. P. 366–370. doi: 10.1016/j.legalmed.2015.05.002
- Obafunwa J.O., Ogunbanjo V.O., Ogunbanjo O.B., et al. Forensic odontological observations in the victims of DANA air crash // Pan Afr Med J. 2015. Vol. 20. P. 96. doi: 10.11604/pamj.2015.20.96.5360
- Iino M., Aoki Y. The use of radiology in the Japanese tsunami DVI process // Forens Radiol Imaging. 2016. Vol. 4. P. 20–26. doi: 10.1016/j.jofri.2015.12.006
- De Boer H.H., Maat G.J., Kadarmo D.A., et al. DNA identification of human remains in Disaster Victim Identification (DVI): An efficient sampling method for muscle, bone, bone marrow and teeth // Forensic Sci Int. 2018. Vol. 289. P. 253–259. doi: 10.1016/j.forsciint.2018.05.044
- Marrone M., Tarantino F., Stellacci A., et al. Forensic analysis and identification processes in mass disasters: Explosion of gun powder in the fireworks factory // Molecules. 2021. Vol. 27, N 1. P. 244. doi: 10.3390/molecules27010244
- Dahal S., Chaudhary G.K., Maharjan M.R., Walung E.D. A dental perspective on the successes and limitations of the disaster victim identification response to the Nepal earthquake // Forensic Sci Res. 2022. Vol. 7, N 3. P. 366–370. doi: 10.1080/20961790.2022.2034716
- Butler J.M. Forensic DNA typing biology, technology, and genetics of STR markers. 2 nd ed. London: Elsevier Academic Press, 2005. 688 р.
- Lee H.C., Ladd C., Bourke M.T., et al. DNA typing in forensic science. I. Theory and background // Am J Forensic Med Pathol. 1994. Vol. 15, N 4. P. 269e82. doi: 10.1097/00000433-199412000-00001
- Odah M. The double helix of justice: The crucial role of DNA in advancing criminal investigations. Preprints. 2024. doi: 10.20944/preprints202403.0450.v1
- Bettens T., Redlich A.D. The effects of confessions on misconduct and guilty pleas in exonerations: Implications for discovery policies // Criminol Public Policy. 2024. Vol. 23, N 1. P. 179–199. doi: 10.1111/1745-9133.12643
- Sahu M.K., Jha H. DNA technology: A potential tool in forensic science. A review // J Exp Zoology India. 2024. Vol. 27, N 1. P. 47. doi: 10.51470/JEZ.2024.27.1.47
- Watson J.L., McNevin D., Ward J. Genetic kinship testing techniques for human remains identification and missing persons investigations // Forensic Genom. 2024. Vol. 4, N 1. P. 4–23. doi: 10.1089/forensic.2023.0018
- Worrapitirungsi W., Sathirapatya T., Sukawutthiya P., et al. Assessing the feasibility of free DNA for disaster victim identification and forensic applications // Sci Rep. 2024. Vol. 14, N 1. P. 5411. doi: 10.1038/s41598-024-53040-0
- Greytak E., Wyatt S., Cady J., et al. Investigative genetic genealogy for human remains identification // J Forensic Sci. 2024. Vol. 69, N 5. P. 1531–1545. doi: 10.1111/1556-4029.15469
- Dash H.R., Yadav T., Arora M. Advancements in forensic DNA analysis in generating investigation leads and elimination of innocents // Forensic Justice. 2024. P. 294–311. doi: 10.4324/9781032629346-20
- Barcenilla C., Cobo-Díaz J.F., De Filippis F., et al. Improved sampling and DNA extraction procedures for microbiome analysis in food-processing environments // Nat Protoc. 2024. Vol. 19, N 5. P. 1291–1310. doi: 10.1038/s41596-023-00949-x
- Shahzad M., De Maeyer H., Salih G.A., et al. Evaluation of storage conditions and the effect on DNA from forensic evidence objects retrieved from lake water // Genes. 2024. Vol. 15, N 3. P. 279. doi: 10.3390/genes15030279
- Simon C., Franke A., Martin A. The polymerase chain reaction: DNA extraction and amplification // Molecular Techniques Taxonomy. 1991. P. 329–355. doi: 10.1007/978-3-642-83962-7_22
- Bukyya J.L., Tejasvi M.L., Avinash A., et al. DNA profiling in forensic science: A review // Glob Med Genet. 2021. Vol. 8, N 04. P. 135–143. doi: 10.1055/s-0041-1728689
- Bright J.A., Taylor D., Gittelson S., Buckleton J. The paradigm shift in DNA profile interpretation // Forensic Sci Int Genet. 2017. Vol. 31. P. e24–e32. doi: 10.1016/j.fsigen.2017.08.005
- Bechky B.A. Evaluative spillovers from technological change: The effects of “DNA envy” on occupational practices in forensic science // Adm Sci Q. 2020. Vol. 65, N 3. P. 606–643. doi: 10.1177/0001839219855329
- Roewer L. DNA fingerprinting in forensics: Past, present, future // Investig Genet. 2023. Vol. 4, N 1. P. 22. doi: 10.1186/2041-2223-4-22
- Jawad E.F., Mahdi W.T., Yaseen H.S. Principles of genetic fingerprinting in forensic medicine // JUBPAS. 2023. Vol. 31, N 1. P. 182–191. doi: 10.29196/jubpas.v31i1.4569
- Smith J.H., Singh M. Forensic DNA profiling: Legal and ethical considerations // J Sci Res Rep. 2024. Vol. 30, N 5. P. 141–144. doi: 10.9734/jsrr/2024/v30i51929
- Tiwari P. Legal and ethical considerations in the use of DNA fingerprinting // J Sci Res Rep. 2024. Vol. 30, N 3. P. 236–242. doi: 10.9734/jsrr/2024/v30i31875
- McCord B.R., Gauthier Q., Cho S., et al. Forensic DNA analysis // Anal Chem. 2019. Vol. 91, N 1. P. 673–688. doi: 10.1021/acs.analchem.8b05318
- Makałowski W. The human genome structure and organization // Acta Biochim Pol. 2001. Vol. 48, N 3. P. 587–598. doi: 10.18388/abp.2001_3893
- Fukuda M., Wakasugi S., Tsuzuki T., et al. Mitochondrial DNA-like sequences in the human nuclear genome: Characterization and implications in the evolution of mitochondrial DNA // J Mol Biol. 1985. Vol. 186, N 2. P. 257–266. doi: 10.1016/0022-2836(85)90102-0
- Collins F.S., McKusick V.A. Implications of the human genome project for medical science // JAMA. 2001. Vol. 285, N 5. P. 540–544. doi: 10.1001/jama.285.5.540
- Nakamura Y., Leppert M., O’Connell P., et al. Variable number of tandem repeat (VNTR) markers for human gene mapping // Science. 1987. Vol. 235, N 4796. P. 1616–1622. doi: 10.1126/science.3029872
- Nakamura Y., Koyama K., Matsushima M. VNTR (variable number of tandem repeat) sequences as transcriptional, translational, or functional regulators // J Hum Genet. 1998. Vol. 43, N 3. P. 149–152. doi: 10.1007/s100380050059
- Bakhtiari M., Shleizer-Burko S., Gymrek M., et al. Targeted genotyping of variable number tandem repeats with adVNTR // Genome Res. 2018. Vol. 28, N 11. P. 1709–1719. doi: 10.1101/gr.235119.118
- Chakraborty R., Fornage M., Gueguen R., Boerwinkle E. Population genetics of hypervariable loci: Analysis of PCR based VNTR polymorphism within a population // EXS. 1991. Vol. 58. P. 127–143. doi: 10.1007/978-3-0348-7312-3_10
- Harding R.M. VNTRs in review. Evolutionary anthropology: Issues, news, and reviews. 1992. Vol. 1, N 2. P. 62–71. doi: 10.1002/evan.1360010208
- Narayanan S. Applications of restriction fragment length polymorphism // Ann Clin Lab Sci. 1991. Vol. 21, N 4. P. 291–296.
- Rahiman S., Nissankararao P. Restriction fragment length polymorphism (RFLP) application in DNA typing for Crime investigation // Indian J Forensic Med Toxicol. 2010. Vol. 4, N 1. P. 79–82.
- Budowle B., Adams D.E., Allen R.C. Fragment-length polymorphisms for forensic science applications // Methods Nucleic Acids Research. 1991. Vol. 181. P. 182.
- Siebers M., Walla A., Rütjes T., et al. Application of DNA fingerprinting using the D1S80 locus in lab classes // J Vis Exp. 2021. Vol. 173. P. e62305. doi: 10.3791/62305
- Vajpayee K., Sagar D.C., Dash H.R. Forensic DNA typing: Inception, methodology, and technical advancements // Forensic DNA typing: Principles, applications and advancements. 2020. P. 3–26. doi: 10.1007/978-981-15-6655-4_1
- Kayser M., Sajantila A., Butler J.M., et al. Special issue: Forensic genetics: Unde venisti et quo vadis? // Forensic Sci Int Genet. 2023. Vol. 65. P. 102881. doi: 10.1016/j.fsigen.2023.102881
- Novroski N.M., Cihlar J.C. Evolution of single-nucleotide polymorphism use in forensic genetics. Wiley Interdisciplinary Reviews // Forensic Sci. 2022. Vol. 4, N 6. P. e1459. doi: 10.1002/wfs2.1459
- Zhang W., Jin X., Wang Y., et al. Genetic polymorphisms and forensic efficiencies of a set of novel autosomal In Del markers in a chinese mongolian group // Biomed Res Int. 2020. Vol. 2020. P. 3925189. doi: 10.1155/2020/3925189
- De Knijff P. On the forensic use of Y-chromosome polymorphisms // Genes. 2022. Vol. 13, N 5. P. 898. doi: 10.3390/genes13050898
- Gang A., Shrivastav V.K. Single-nucleotide polymorphism: A forensic perspective. Handbook of DNA Profiling. 2020. P. 1–22. doi: 10.1007/978-981-15-9364-2_8-1
- Sameer A.S., Banday M.Z., Nissar S. Mutations and polymorphisms: What is the difference? // Genetic Polymorphism Cancer Susceptibility. 2021. P. 1–21. doi: 10.1007/978-981-33-6699-2_1
- Peng D., Zhang Y., Ren H., et al. Identification of sequence polymorphisms at 58 STRs and 94 iiSNPs in a Tibetan population using massively parallel sequencing // Sci Rep. 2020. Vol. 10, N 1. P. 12225. doi: 10.1038/s41598-020-69137-1
- Ji Y., Gong J., Sedlazeck F.J., Fan S. Characterizing the genetic polymorphisms in 370 challenging medically relevant genes using long-read sequencing data from 41 human individuals among 19 global populations // BioRxiv. 2022. doi: 10.1101/2022.08.03.502734
- Basu B.R., Pal R., Samaddar A., Chackraborty S. Genetic polymorphism: Evolution with technological advances and future direction // Indian J Physiol Allied Sci. 2022. Vol. 74, N 4. P. 12–15. doi: 10.55184/ijpas.v74i04.35
- Tozzo P., Politi C., Delicati A., et al. External visible characteristics prediction through SNPs analysis in the forensic setting: A review // Front Biosci (Landmark Ed). 2021. Vol. 26, N 10. P. 828–850. doi: 10.52586/4991
- Purcell J., Lagunas-Robles G., Rabeling C., et al. The maintenance of polymorphism in an ancient social supergene // Mol Ecol. 2021. Vol. 30, N 23. P. 6246–6258. doi: 10.1111/mec.16196
- Loureiro L.O., Engstrom M.D., Lim B.K. Single nucleotide polymorphisms (SNPs) provide unprecedented resolution of species boundaries, phylogenetic relationships, and genetic diversity in the mastiff bats (Molossus) // Mol Phylogenet Evol. 2020. Vol. 143. P. 106690. doi: 10.1016/j.ympev.2019.106690
- Zhang Y., Lu W. Toll-like receptors gene polymorphisms in autoimmune disease // Front Immunol. 2021. Vol. 12. P. 672346. doi: 10.3389/fimmu.2021.672346
- Inuwa H.M., Ezeonu I.M., Adetunji C.O., et al. Medical biotechnology, biopharmaceutics, forensic science and bioinformatics. CRC Press, 2022. 460 р. doi: 10.1201/9781003178903
- Ghatak S., Muthukumaran R.B., Nachimuthu S.K. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis // J Biomol Tech. 2013. Vol. 24, N 4. P. 224–231. doi: 10.7171/jbt.13-2404-001
- Bugawan T.L., Saiki R.K., Levenson C.H., et al. The use of non-radioactive oligonucleotide probes to analyze enzymatically amplified DNA for prenatal diagnosis and forensic HLA typing // Nat Biotechnol. 1988. Vol. 6, N 8. P. 943–947. doi: 10.1038/nbt0888-943
- Gautam A. Polymerase chain reaction (PCR). In: DNA and RNA isolation techniques for non-experts. Cham: Springer International Publishing, 2022. P. 157–163. doi: 10.1007/978-3-030-94230-4_20
- Kaushik S., Sahajpal V. Capillary electrophoresis issues in forensic DNA typing // Forensic DNA typing: Principles, applications and advancements. 2020. P. 223–238. doi: 10.1007/978-981-15-6655-4_11
- Yuguda Y.M. Application of Next Generation Sequencing (NGS) technology in forensic science: A review // GSC Biol Pharm Sci. 2023. Vol. 23, N 2. P. 155–159. doi: 10.30574/gscbps.2023.23.2.0199
- Simoes Dutra Correa H., Brescia G., Cortellini V., et al. DNA quantitation and degradation assessment: A quantitative PCR protocol designed for small forensic genetics laboratories // Electrophoresis. 2020. Vol. 41, N 9. P. 714–719. doi: 10.1002/elps.201900360
- Francez P.A., Penido D.C., De Brito G.D., et al. Comparison between automated DNA extraction employing the EZ1 platform and manual methods using real forensic samples // Rev Bras Crimin. 2021. Vol. 10, N 1. P. 44–56. doi: 10.15260/rbc.v10i1.476
- Turingan R.S., Brown J., Kaplun L., et al. Identification of human remains using rapid DNA analysis // Int J Legal Med. 2020. Vol. 134, N 3. P. 863–872. doi: 10.1007/s00414-019-02186-y
- Amankwaa A.O. Trends in forensic DNA database: Transnational exchange of DNA data // Forensic Sci Res. 2020. Vol. 5, N 1. P. 8–14. doi: 10.1080/20961790.2019.1565651
- Kesic B., McCann N., Bowerbank S.L., et al. Forensic profiling of smokeless powders (SLPs) by gas chromatography-mass spectrometry (GC-MS): A systematic investigation into injector conditions and their effect on the characterisation of samples // Anal Bioanal Chem. 2024. Vol. 416, N 8. P. 1907–1922. doi: 10.1007/s00216-024-05189-w
- Abdel-Hay K.M., Belal T.S., Abiedalla Y., et al. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography-infrared (GC-IR) analyses of the chloro-1-n-pentyl-3-(1-naphthoyl)-indoles: Regioisomeric cannabinoids // Appl Spectrosc. 2019. Vol. 73, N 4. P. 433–443. doi: 10.1177/0003702818809998
- Graham E.A. Lab-on-a-chip technology // Forensic Sci Med Pathol. 2005. Vol. 1, N 3. P. 221–223. doi: 10.1385/FSMP:1:3:221
- Medina-Sánchez M., Miserere S., Merkoçi A. Nanomaterials and lab-on-a-chip technologies // Lab Chip. 2012. Vol. 12, N 11. P. 1932–1943. doi: 10.1039/c2lc40063d
- Stanley U.N., Khadija A.M., Bukola A.T., et al. Forensic DNA profiling: Autosomal short tandem repeat as a prominent marker in crime investigation // Malays J Med Sci. 2020. Vol. 27, N 4. P. 22. doi: 10.21315/mjms2020.27.4.3
- Keerti A., Ninave S. DNA fingerprinting: Use of autosomal short tandem repeats in forensic DNA typing // Cureus. 2022. Vol. 14, N 10. P. e30210. doi: 10.7759/cureus.30210
- Novroski N.M., Woerner A.E., Budowle B. Potential highly polymorphic short tandem repeat markers for enhanced forensic identity testing // Forensic Sci Int Genet. 2018. Vol. 37. P. 162–171. doi: 10.1016/j.fsigen.2018.08.011
- Giardina E., Ragazzo M. Special Issue «Forensic Genetics and Genomics» // Genes (Basel). 2021. Vol. 12, N 2. P. 158. doi: 10.3390/genes12020158
- Malik S.D., Pillai J.P., Malik U. Forensic genetics: Scope and application from forensic odontology perspective // J Oral Maxillofac Pathol. 2022. Vol. 26, N 4. P. 558–563. doi: 10.4103/jomfp.jomfp_341_21
- Hadi I., Abdullah M., Jaber A., Yoke C. Genetic variation of twenty autosomal STR loci and evaluate the importance of these loci for forensic genetic purposes // Afr J Biotechnol. 2014. Vol. 13, N 11. P. 1210–1218. doi: 10.5897/AJB2013.12923
- Dash H.R., Rawat N., Kakkar S., Swain A.K. Fundamentals of autosomal STR typing for forensic applications: Case studies // DNA fingerprinting: Advancements and future endeavors. 2018. P. 209–221. doi: 10.1007/978-981-13-1583-1_12
- Sharma A.K., Ghosh T. High autosomal STR allele sharing between full siblings // Aust J Forensic Sci. 2010. Vol. 42, N 2. P. 137–140. doi: 10.1080/00450610903258078
- Guerrini C.J., Brooks W.B., Robinson J.O., et al. IGG in the trenches: Results of an in-depth interview study on the practice, politics, and future of investigative genetic genealogy // Forensic Sci Int. 2024. Vol. 356. P. 111946. doi: 10.1016/j.forsciint.2024.111946
- Wickenheiser R.A. Expanding DNA database effectiveness // Forensic Sci Int Synerg. 2022. Vol. 4. P. 100226. doi: 10.1016/j.fsisyn.2022.100226
- Ruitberg C.M., Reeder D.J., Butler J.M. STRBase: A short tandem repeat DNA database for human identity testing community // Nucleic Acid Res. 2001. Vol. 29, N 1. P. 320–322. doi: 10.1093/nar/29.1.320
- Combined DNA index system (CODIS). Federal Beaureau of investigations (US). [2024 March 28]. Режим доступа: http://www.justice.gov/oig/reports/FBI/a0126/final.pdf. Дата обращения: 15.07.2024.
- Combined DNA Index system. DNA Initiative [2024 March 28]. Режим доступа: http://www.dna.gov/dna-databases/codis. Дата обращения: 15.07.2024.
- D’Atanasio E., Cruciani F., Trombetta B. Single-nucleotide polymorphisms: An overview of the sequence polymorphisms // Forensic DNA Analysis. 2021. P. 23–50. doi: 10.1201/9781003043027-3
- Kitamura M. [DNA typing for individual identification] // Yakugaku Zasshi. 2019. Vol. 139, N 5. P. 725–730. doi: 10.1248/yakushi.18-00166-6
- Wu L., Chu X., Zheng J., et al. Targeted capture and sequencing of 1245 SNPs for forensic applications // Forensic Sci Int Genet. 2019. Vol. 42. P. 227–234. doi: 10.1016/j.fsigen.2019.07.006
- Darwin D., Sakthivel S., Castelino R.L., et al. Oral cavity: A forensic kaleidoscope // J Health Allied Sci. 2022. Vol. 12, N 1. P. 7–12. doi: 10.1055/s-0041-1731117
- Ata-Ali J., Ata-Ali F. Forensic dentistry in human identification: A review of the literature // J Clin Exp Dent. 2014. Vol. 6, N 2. P. e162–e167. doi: 10.4317/jced.51387
- Rajkumari S. Oral autopsy-dental surgeon’s perspective // J Forensic Dent Sci. 2020. Vol. 12, N 1. P. 66–71. doi: 10.18311/jfds/12/1/2020.9
- Pandeshwar P, Das R. Role of oral fluids in DNA investigations // J Forensic Leg Med. 2014. Vol. 22. P. 45–50. doi: 10.1016/j.jflm.2013.12.007
- Lovisolo F., Ogbanga N., Sguazzi G., et al. Oral and skin microbiome as potential tools in forensic field // Forensic Sci Int Genet Suppl Ser. 2022. Vol. 8. P. 65–67. doi: 10.1016/j.fsigss.2022.09.024
- Heathfield L.J., Haikney T.E., Mole C.G., et al. Forensic human identification: Investigation into tooth morphotype and DNA extraction methods from teeth // Sci Justice. 2021. Vol. 61, N 4. P. 339–344. doi: 10.1016/j.scijus.2021.05.005
- Hochmeister M.N. PCR analysis of DNA from fresh and decomposed bodies and skeletal remains in medico legal death investigations // Methods Mol Biol. 1998. Vol. 98. P. 19–26. doi: 10.1385/0-89603-443-7:19
- Smith B.C., Fisher D.L., Weedn V.W., et al. A systematic approach to the sampling of Dental DNA // J Forensic Sci. 1993. Vol. 38, N 5. P. 1194–209. doi: 10.1520/jfs13524j
- Tran-Hung L., Tran-Thi N., Aboudharam G., et al. New method to extract dental pulp DNA: Application to universal detection of bacteria // PLoS One. 2007. Vol. 2, N 10. P. e1062. doi: 10.1371/journal.pone.0001062
- Sweet D., Hildebrand D. Recovery of DNA from human teeth by cryogenic grinding // J Forensic Sci. 1998. Vol. 43, N 6. P. 1199–1202. doi: 10.1520/jfs14385j
- Kaleelullah R.A., Hamid P. Forensic odontology, a boon and a humanitarian tool: A literature review // Cureus. 2020. Vol. 12, N 3. P. e7400. doi: 10.7759/cureus.7400
- Qadri A.W., Yadav S., Jain A., et al. Tooth as a vital source of DNA in forensic odontology: Recent perspective // J Dent Educ. 2023. Vol. 9, N 2. P. 73–79. doi: 10.25259/JADE_43_2023
- Lozano-Peral D., Rubio L., Santos I., et al. DNA degradation in human teeth exposed to thermal stress // Sci Rep. 2021. Vol. 11, N 1. P. 12118. doi: 10.1038/s41598-021-91505-8
- Raffone C., Baeta M., Lambacher N., et al. Intrinsic and extrinsic factors that may influence DNA preservation in skeletal remains: A review // Forensic Sci Int. 2021. Vol. 325. P. 110859. doi: 10.1016/j.forsciint.2021.110859
- Carrasco P., Inostroza C., Didier M., et al. Optimizing DNA recovery and forensic typing of degraded blood and dental remains using a specialized extraction method, comprehensive qPCR sample characterization, and massively parallel sequencing // Int J Legal Med. 2020. Vol. 134, N 1. P. 79–91. doi: 10.1007/s00414-019-02124-y
- Correa H.S., Cortellini V., Brescia G., Verzeletti A. Human identification through DNA analysis of restored postmortem teeth // Forensic Sci Int Genet. 2020. Vol. 47. P. 102302. doi: 10.1016/j.fsigen.2020.102302
- Utama V., Tanjung R., Quendangen A., et al. The role of dental record data in the mass disaster identification process: A case report of the Sriwijaya SJ-182 airplane crash // Quality Improvement in Dental and Medical Knowledge, Research, Skills and Ethics Facing Global Challenges. CRC Press, 2024. P. 299–304. doi: 10.1201/9781003402374-46
- Pajnič I.Z. Molecular genetic aspects of ancient DNA analyses // Zdrav Vestn. 2020. Vol. 89, N 3-4. P. 171–189. doi: 10.6016/ZdravVestn.2923
- EM-DAT: The OFDA/CRED International Disaster Database. Disaster Data: A Balanced Perspective. Issue 48. [2017, Sept]. Режим доступа: http://www.emdat.be/#pager. Дата обращения: 15.07.2024.
- Dutta S.R., Singh P., Passi D., et al. The role of dentistry in disaster management and victim identification: An overview of challenges in Indo-Nepal scenario // J Maxillofac Oral Surg. 2016. Vol. 15. P. 442–448. doi: 10.1007/s12663-016-0896-4
- Gambhir R.S., Singh G., Talwar P.S., et al. Knowledge and awareness of forensic odontology among dentists in India: A systematic review // J Forensic Dent Sci. 2016. Vol. 8, N 1. P. 2–6. doi: 10.4103/0975-1475.176954
- Lau G., Tan W.F., Tan P.H. After the Indian ocean tsunami: Singapore’s contribution to the international disaster victim identification effort in Thailand // Ann Acad Med Singapore. 2005. Vol. 34, N 5. P. 341–351.
- James H. Thai tsunami victim identification: Overview to date // J Forensic Odonto-stomatol. 2023. Vol. 23, N 1. P. 1–18.
Дополнительные файлы
