Технологическое проектирование станций технического обслуживания автомобилей с использованием генетических алгоритмов

Обложка

Цитировать

Полный текст

Аннотация

В исследовании приведено обоснование использования эволюционных методов или генетических алгоритмов для технологического проектирования вновь сооружаемых или модернизируемых станций технического обслуживания автомобилей. Генетические алгоритмы являются одним из видов моделей машинного обучения и активно используются для решения многофакторных оптимизационных задач. Задачей такого типа является поиск технических параметров предприятия сервиса автомобилей, при которых экономические показатели его деятельности будут соответствовать установленным пользователем ограничениям по прибыли или капитальным затратам. В работе приведены параметры разработанной модели, функции приспособленности, а также приведена оценка эффективности использования метода генетических алгоритмов относительно метода простого перебора разных вариантов сочетаний исходных факторов.

Цель: повышение эффективности управления предприятиями автомобильного транспорта путем использования для задач стратегического планирования метода генетических алгоритмов.

Метод и методология проведения работы. В исследовании используется метод генетических алгоритмов для решения многокритериальной задачи обратной оптимизации при технологическом проектировании станции технического обслуживания автомобилей

Результаты. Обосновано использование метода генетических алгоритмов для проектирования станций технического обслуживания и предприятий по техническому обслуживанию и ремонту автомобилей с учетом установленных в начале проектирования ограничений или целевых показателей.

Область применения результатов. Результаты исследования могут быть использованы руководством предприятий по техническому обслуживанию и ремонту автомобилей при их проектировании, стратегическом планировании деятельности и модернизации.

Об авторах

Николай Степанович Захаров

Тюменский индустриальный университет

Email: zakharovns@tyuiu.ru

заведующий кафедрой сервиса автомобилей и технологических машин, доктор технических наук, профессор 

Россия, ул. Володарского, 38, г. Тюмень, 625000, Российская Федерация

Евгений Сергеевич Козин

Тюменский индустриальный университет

Автор, ответственный за переписку.
Email: kozines@tyuiu.ru

доцент кафедры сервиса автомобилей и технологических машин, кандидат технических наук, доцент

Россия, ул. Володарского, 38, г. Тюмень, 625000, Российская Федерация

Список литературы

  1. Карагодин В.И. Эффект от учета взаимосвязи производственных участков при проектировании станции технического обслуживания автомобилей / В.И. Карагодин, В.О. Малютин // Автотранспортное предприятие. 2015. № 2. С. 21-24.
  2. Козин Е.С. Система поддержки принятия решений по управлению станцией технического обслуживания автомобилей // Транспорт Урала. 2022. № 3 (74). С. 73-77.
  3. Лялин К.В. Технологический расчет и планировка станций технического обслуживания автомобилей: учебное пособие / К. В. Лялин, В. П. Лялин. Екатеринбург: РГППУ, 2019. 124 с.
  4. Соколова А.В. Обоснование мощности дорожной станции технического обслуживания автомобилей / А.В. Соколова, А.В. Маркелов, В.А. Масленников, Д.А. Павлов // Транспорт. Транспортные сооружения. Экология. 2020. № 4. С. 5-14.
  5. Adomavicius G. et al. Workshop on Context-Aware Recommender Systems 2023 // Proceedings of the 17th ACM Conference on Recommender Systems. 2023. P. 1234-1236. https://doi.org/10.1609/aimag.v32i3.2364
  6. Antuori V. et al. Combining Monte Carlo tree search and depth first search methods for a car manufacturing workshop scheduling problem // International Conference on Principles and Practice of Constraint Programming. 2021. https://doi.org/10.4230/LIPIcs.CP.2021.14
  7. Baturu C. et al. Brute force algorithm implementation of dictionary search // Jurnal Info Sains: Informatika dan Sains. 2020. Vol. 10. № 1. С. 24-30. http://ejournal.seaninstitute.or.id/index.php/InfoSains
  8. Chan T. C. Y., Mahmood R., Zhu I. Y. Inverse optimization: Theory and applications // Operations Research. 2023. https://arxiv.org/abs/2109.03920
  9. Fayziyev P. R. et al. Organization of technological processes for maintenance and repair of electric vehicles // International Journal of Advance Scientific Research. 2022. Vol. 2. № 03. С. 37-41. https://doi.org/10.37547/ijasr-02-03-06
  10. Fu C. et al. A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems // European Journal of Operational Research. 2022. Vol. 298. № 3. С. 915-938. https://doi.org/10.1016/j.ejor.2021.06.014
  11. Gössling S., Kees J., Litman T. The lifetime cost of driving a car // Ecological Economics. 2022. Vol. 194. P. 107335. https://doi.org/10.1016/j.ecolecon.2021.107335
  12. Hong J., Kim B., Oh S. The relationship benefits of auto maintenance and repair service: A case study of Korea // Behavioral Sciences. 2020. Vol. 10. № 7. P. 115. https://doi.org/10.3390/bs10070115
  13. Ikromov I. A., Abduraximov A. A., Fayzullayev H. Experience and prospects for the development of car service in the field of car maintenance //ISJ Theoretical & Applied Science. 2021. Vol. 11. № 103. P. 344-346. https://doi.org/10.15863/TAS.2021.11.103.25
  14. Jain N. K., Singh A. K., Kaushik K. Evaluating service quality in automobile maintenance and repair industry // Asia Pacific Journal of Marketing and Logistics. 2020. Vol. 32. № 1. P. 117-134. https://doi.org/10.1108/APJML-07-2018-0277
  15. Katoch S., Chauhan S. S., Kumar V. A review on genetic algorithm: past, present, and future // Multimedia tools and applications. 2021. Vol. 80. P. 8091-8126. https://doi.org/10.1007/s11042-020-10139-6
  16. Lambora A., Gupta K., Chopra K. Genetic algorithm-A literature review // 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon). IEEE, 2019. P. 380-384. https://doi.org/10.1109/COMITCon.2019.8862255
  17. Liu P., Wang G., Su P. Optimal maintenance strategies for warranty products with limited repair time and limited repair number // Reliability Engineering & System Safety. 2021. Vol. 210. P. 107554. https://doi.org/10.1016/j.ress.2021.107554
  18. Papadimitriou D., Li J. Constraint Inference in Control Tasks from Expert Demonstrations via Inverse Optimization // 2023 62nd IEEE Conference on Decision and Control (CDC). IEEE, 2023. P. 1762-1769. https://arxiv.org/abs/2304.03367
  19. Turoń K., Kubik A. Economic aspects of driving various types of vehicles in intelligent urban transport systems, including car-sharing services and autonomous vehicles // Applied Sciences. 2020. Vol. 10. № 16. P. 5580. https://doi.org/10.3390/app10165580
  20. Wang Z. Z., Sobey A. A comparative review between Genetic Algorithm use in composite optimisation and the state-of-the-art in evolutionary computation // Composite Structures. 2020. Vol. 233. P. 111739. https://doi.org/10.1016/j.compstruct.2019.111739
  21. Wuttikun K. et al. Service Station Modelling Through Enterprise Architecture: Business Intelligence and Customer Engagement of Top Service Stations in Thailand // 2021 5th National Conference on Advances in Enterprise Architecture (NCAEA). https://doi.org/10.1109/NCAEA54556.2021.9690506

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Захаров Н.С., Козин Е.С., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».