Influence of dynamic properties of the process module on vertical vibrations of the wheel axis
- 作者: Kornyushin Y.P.1, Sidorov M.V.1
-
隶属关系:
- Bauman Moscow State Technical University, Kaluga Branch
- 期: 卷 15, 编号 2 (2025)
- 页面: 161-176
- 栏目: Articles
- ##submission.datePublished##: 30.06.2025
- URL: https://bakhtiniada.ru/2328-1391/article/view/299258
- DOI: https://doi.org/10.12731/2227-930X-2025-15-2-341
- EDN: https://elibrary.ru/GJGBJR
- ID: 299258
如何引用文章
全文:
详细
Background. The article examines the influence of the dynamic properties of the technological module on the process of forming vertical vibrations of the wheel axis when moving along a given bearing surface. The following methods were used in the study: a mathematical model of half of the technological module, a bus model. The amplitude-frequency characteristics of the system and spectral densities for vertical displacement and acceleration of the wheel axis for four configurations are obtained when changing the parameter characterizing the dynamic properties of technological modules. Statistical dynamics methods were used to analyze the dependencies. With an increase in the mass of the technological module from 1429 kg to 3929 kg (to transfer the tractor from traction class 1.4 to traction class 2 and 3, respectively), when using 15.5R38 tires, there is a decrease in the natural frequency of the technological module from 24 to 14 rad/s and an increase in the maximum spectral density from 0.5*10-3 to 4*10-3. With an increase in the mass of the technological module from 2343 kg to 4847 kg (to transfer the tractor from traction class 3 to traction class 4 and 5, respectively), when using tires 21.3R24, there is a decrease in the natural oscillation frequency of the technological module from 18 to 12 rad/s and an increase in the maximum spectral density from 1.5 * 10-3 to 6*10-3. The spectral density (characterizing the distribution of process energy) of vertical vibrations of the support surface in the frequency range (0...5 rad/s) coincides with the spectral density of the wheel axis of technological modules of all configurations.
Purpose. Obtaining and analyzing statistical characteristics describing the dynamic properties of technological modules when moving along a given support surface.
Methodology. In the article were used the methods of mathematical modeling and also statistical methods of the analysis.
Results. Statistical characteristics describing the dynamic properties of technological modules when moving along a given support surface are obtained.
Practical implications. It is advisable to apply the results obtained to organizations and institutions involved in the development of methods and tools for studying the dynamics of tractors and automobiles.
作者简介
Yuri Kornyushin
Bauman Moscow State Technical University, Kaluga Branch
编辑信件的主要联系方式.
Email: theroland@yandex.ru
SPIN 代码: 4391-3096
Professor of the Department "Automatic Control Systems", Doctor of Technical Sciences
俄罗斯联邦, 2, Bazhenova Str., Kaluga, 248000, Russian FederationMaksim Sidorov
Bauman Moscow State Technical University, Kaluga Branch
Email: sidorov-kaluga@yandex.ru
ORCID iD: 0000-0002-6686-2282
SPIN 代码: 6131-3669
Scopus 作者 ID: 57211752346
Associate Professor of the Department "Wheeled vehicles and Applied Mechanics", Candidate of Technical Sciences
俄罗斯联邦, 2, Bazhenova Str., Kaluga, 248000, Russian Federation参考
- Lavrov, A. V., Sidorov, M. V., & Voronin, V. A. (2021). Technological module for peasant farms. Sel'skij Mekhanizator, (3), 5. EDN: https://elibrary.ru/WKMHWK
- Skrynnikov, A. V., Shikhin, A. V., Popov, A. A., & Sidorov, V. N. (2022). Wheel-Tire Interaction Modeling with Support Base of Mobile Module. Don Engineering Bulletin, (6). Retrieved from ivdon.ru/ru/magazine/archive/n6y2022/7695 EDN: https://elibrary.ru/RIGKUW
- Pevzner, Ya. M., Gridasov, G. G., & Konev, A. D., et al. (1979). Car Oscillations. Testing and Research. Moscow: Mashinostroenie. 208 p.
- Khachaturov, A. A., Afanasiev, V. L., & Vasilev, V. S., et al. (1976). Dynamic Behavior of Driver-Vehicle-Wheel-Road System. Moscow: Mashinostroenie. 535 p.
- Sidorova, A. V., Stepin, P. I., & Sidorov, V. N. (2020). Simulation of Mass Center Oscillation of Wheeled Machine Using Simulink Software. Don Engineering Bulletin, (4). Retrieved from ivdon.ru/ru/magazine/archive/n4y2020/6395 EDN: https://elibrary.ru/VVKADR
- Sidorov, M. V., Sudeyko, O. V., & Sidorov, V. N. (2021). Simulation of vibration loading of passenger seats in buses used for intra-farm transportation of agricultural enterprises. AgroEcoInfo: Electronic Scientific and Industrial Journal, (2). Retrieved from http://agroecoinfo.ru/STATYI/2021/2/st_216.pdf EDN: https://elibrary.ru/NIUORD
- Kotiev, G. O., & Sarach, E. B. (2010). Complex Suspension System for Highly Mobile Two-Section Tracked Vehicles. Moscow. 184 pp. EDN: https://elibrary.ru/ZCLELL
- Lur'e, A. B. (1981). Statistical Dynamics of Agricultural Units. Moscow. 382 p.
- Popov, V. B. (2005). Mathematical modeling of mobile agricultural equipment in transport crossing mode. Bulletin of Gomel State Technical University named after P. O. Sukhoi, (3), 13–18. EDN: https://elibrary.ru/PYVSMT
- Projecting all-wheel drive wheel machines. (2008). Moscow. Book 1. 496 p.
- Zhileykin, M. M., Kotiev, G. O., & Sarach, E. B. (2018). Mathematical Models of Transport Systems: Guidelines. Moscow: BMSTU. Retrieved from https://e.lanbook.com/book/103321
- Boykov, V. P., & Belkovskii, V. N. (1988). Tires for tractors and agricultural machinery. Moscow: Agropromizdat. 240 p.
补充文件
