Extending the reproductive period in women: modern approaches and anti-aging therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The increase in life expectancy and the trend toward postponing first pregnancy have stimulated the search for effective methods to extend the reproductive period in women and to improve their quality of life. This review analyzes current understanding of the physiological and molecular processes underlying ovarian aging, as well as contemporary anti-aging strategies aimed at enhancing ovarian reserve and maintaining fertility. Particular attention is given to the role of oxidative stress, mitochondrial dysfunction, and epigenetic mechanisms, including DNA modifications, along with innovative therapeutic approaches. Specifically, platelet-rich plasma (PRP) therapy (intraovarian injection of platelet-rich plasma), the use of stem cells for ovarian tissue regeneration, senotherapy targeting the elimination of senescent cells, and the prospects of mitochondrial donation technology to improve oocyte quality are discussed. Clinical and experimental studies demonstrating the efficacy of these strategies in preserving reproductive potential are presented, highlighting new opportunities in infertility treatment, quality-of-life improvement, and enabling later motherhood. Limitations and future research directions in this rapidly evolving field are also discussed.

About the authors

Svetlana V. Kamoeva

Clinic "K+31" West; Pirogov Russian National Research Medical University

Author for correspondence.
Email: sv02016@yandex.ru
ORCID iD: 0000-0002-7238-9911
SPIN-code: 6059-0738

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow; 1 Ostrovityanov st, Moscow, 117997

Diana S. Makovskaya

Clinic "K+31" West

Email: littlede@rambler.ru
ORCID iD: 0000-0003-0159-8641
SPIN-code: 9161-6635
Russian Federation, Moscow

Yulia E. Dobrokhotova

Pirogov Russian National Research Medical University

Email: pr.dobrohotova@mail.ru
ORCID iD: 0000-0002-7830-2290
SPIN-code: 2925-9948

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 1 Ostrovityanov st, Moscow, 117997

References

  1. Uryupina KV, Kutsenko II, Kravtsova EI, Gavryuchenko PA. Ovarian infertility factor in patients of late reproductive age. Medical Herald of the South of Russia. 2020;11(1):14–20. doi: 10.21886/2219-8075-2020-11-1-14-20 EDN: XHUYNL
  2. Findlay JK, Hutt KJ, Hickey M, et al. How is the number of primordial follicles in the ovarian reserve established? Biol Reprod. 2015;93(5):111. doi: 10.1095/biolreprod.115.133652
  3. Berezina DA, Kudryavtseva EV, Gavrilov IV. Role of oxidative stress in female reproductive system: literature review. Perm Medical Journal. 2023;40(4):62–72. doi: 10.17816/pmj40462-72 EDN: CUJHQS
  4. Chon SJ, Umair Z, Yoon MS. Premature ovarian insuffciency: past, present, and future. Front Cell Dev Biol. 2021;9:672890. doi: 10.3389/fcell.2021.672890
  5. Podfgurna-Stopa A, Czyzyk A, Grymowicz M, et al. Premature ovarian insufciency: the context of longterm efects. J Endocrinol Invest. 2016;39(9):983–990. doi: 10.1007/s40618-016-0467-z
  6. Malek AM, Vladutiu CJ, Meyer ML, et al. The association of age at menopause and all-cause and cause-specifc mortality by race, postmenopausal hormone use, and smoking status. Prev Med Rep. 2019;15:100955. doi: 10.1016/j.pmedr.2019.100955
  7. Cavalcante MB, Sampaio OGM, Câmara FEA, et al. Ovarian aging in humans: potential strategies for extending reproductive lifespan. Geroscience. 2023;45(4):2121–2133. doi: 10.1007/s11357-023-00768-8
  8. Agarwal A, Durairajanayagam D, du Plessis SS. Oxidative stress and female reproduction: an update. Reprod Biomed Online. 2021;42(5):813–816. doi: 10.1186/1477-7827-10-49
  9. Avila J, Gonzalez-Fernandez R, Rotoli D, et al. Oxidative stress in granulosa-lutein cells from in vitro fertilization patients. Reprod Sci. 2016;23(12):1656–1661. doi: 10.1177/1933719116674077
  10. Moolhuijsen LME, Visser JA. Anti-Müllerian hormone and ovarian reserve: update on assessing ovarian function. J Clin Endocrinol Metab. 2020;105(11):3361–3373. doi: 10.1210/clinem/dgaa513
  11. Knight AK, Hipp HS, Abhari S, et al. Markers of ovarian reserve are associated with reproductive age acceleration in granulosa cells from IVF patients. Hum Reprod. 2022;37(10):2438–2445. doi: 10.1093/humrep/deac178
  12. de Kat AC, Broekmans FJM, Lambalk CB. Role of AMH in prediction of menopause. Front Endocrinol (Lausanne). 2021;12:733731. doi: 10.3389/fendo.2021.733731
  13. Zhang JJ, Liu X, Chen L, et al. Advanced maternal age alters expression of maternal effect genes that are essential for human oocyte quality. Aging (Albany NY). 2020;12(4):3950–3961. doi: 10.18632/aging.102864
  14. Chun Y, Kim J. Autophagy: an essential degradation program for cellular homeostasis and life. Cells. 2018;7(12):278. doi: 10.3390/cells7120278
  15. Savitsky DV, Linkova NS, Kozhevnikova EO, et al. SASP of endothelium and vascular smooth muscle cells: role in pathogenesis and therapy of atherosclerosis. Molecular Medicine. 2022;(4):9–15. doi: 10.29296/24999490-2022-04-02 EDN: CECRWC
  16. Guo Z, Yu Q. Role of mTOR signaling in female reproduction. Front Endocrinol (Lausanne). 2019;10:692. doi: 10.3389/fendo.2019.00692
  17. Wang J, Sun X, Yang Z, et al. Epigenetic regulation in premature ovarian failure: a literature review. Front Physiol. 2023;13:998424. doi: 10.3389/fphys.2022.998424
  18. Rea IM, Gibson DS, McGilligan V, et al. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol. 2018;9:586. doi: 10.3389/fimmu.2018.00586
  19. Shirasuna K, Iwata H. Effect of aging on the female reproductive function. Contracept Reprod Med. 2017;2:23. doi: 10.1186/s40834-017-0050-9
  20. Secomandi L, Borghesan M, Velarde M, Demaria M. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Hum Reprod Update. 2022;28(2):172–189. doi: 10.1093/humupd/dmab038
  21. Newson L. Menopause and cardiovascular disease. Post Reprod Health. 2018;24(1):44–49. doi: 10.1177/2053369117749675
  22. Manson JE, Chlebowski RT, Stefanick ML, et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. JAMA. 2013;310(13):1353–68. doi: 10.1001/jama.2013.278040
  23. Xu L, Hu C, Liu Q, Li Y. The effect of dehydroepiandrosterone (DHEA) supplementation on IVF or ICSI: a meta-analysis of randomized controlled trials. Geburtshilfe Frauenheilkd. 2019;79(7):705–712. doi: 10.1055/a-0882-3791
  24. Wang Y, Hekimi S. Understanding ubiquinone. Trends Cell Biol. 2016;26(5):367–378. doi: 10.1016/j.tcb.2015.12.007
  25. Xu Y, Nisenblat V, Lu C, et al. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reprod Biol Endocrinol. 2018;16(1):29. doi: 10.1186/s12958-018-0343-0
  26. Zhang Y, Zhang C, Shu J, et al. Adjuvant treatment strategies in ovarian stimulation for poor responders undergoing IVF: a systematic review and network meta-analysis. Hum Reprod Update. 2020;26(2):247–263. doi: 10.1093/humupd/dmz046
  27. Tamura H, Takasaki A, Taketani T, et al. Melatonin and female reproduction. J Obstet Gynaecol Res. 2014;40(1):1–11. doi: 10.1111/jog.12177
  28. He C, Wang J, Zhang Z, et al. Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte's quality under in vitro conditions. Int J Mol Sci. 2016;17(6):939. doi: 10.3390/ijms17060939
  29. Potiris A, Stavros S, Voros C, et al. Intraovarian platelet-rich plasma administration for anovulatory infertility: preliminary findings of a prospective cohort study. Journal of Clinical Medicine. 2024;13(17):5292. doi: 10.3390/jcm13175292
  30. Sills ES, Rickers NS, Li X, Palermo GD. First data on in vitro fertilization and blastocyst formation after intraovarian injection of calcium gluconate-activated autologous platelet rich plasma. Gynecol Endocrinol. 2018;34(9):756–760. doi: 10.1080/09513590.2018.1445219
  31. Kasaven LS, Saso S, Getreu N, et al. Age-related fertility decline: is there a role for elective ovarian tissue cryopreservation? Hum Reprod. 2022;37(9):1970–1979. doi: 10.1093/humrep/deac144
  32. Practice committee of the American society for reproductive medicine. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertil Steril. 2019;112(6):1022–1033. doi: 10.1016/j.fertnstert.2019.09.013
  33. Pacheco F, Oktay K. Current success and efciency of autologous ovarian transplantation: a meta-analysis. Reprod Sci. 2017;24(8):1111–1120. doi: 10.1177/1933719117702251
  34. Farnezi HCM, Goulart ACX, Santos AD, et al. Three-parent babies: Mitochondrial replacement therapies. JBRA Assist Reprod. 2020;24(2):189–196. doi: 10.5935/1518-0557.20190086
  35. Zhao YX, Chen SR, Su PP, et al. Using mesenchymal stem cells to treat female infertility: an update on female reproductive diseases. Stem Cells Int. 2019;2019:9071720. doi: 10.1155/2019/9071720
  36. Castrillon DH, Miao L, Kollipara R, et al. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301(5630):215–218. doi: 10.1126/science.1086336
  37. Skaznik-Wikiel ME, Swindle DC, Allshouse AA, et al. High-fat diet causes subfertility and compromised ovarian function independent of obesity in mice. Biol Reprod. 2016;94(5):108. doi: 10.1095/biolreprod.115.137414
  38. Clarke SL, Reaven GM, Leonard D, et al. Cardiorespiratory fitness, body mass index, and markers of insulin resistance in apparently healthy women and men. Am J Med. 2020;133(7):825–830.e2. doi: 10.1016/j.amjmed.2019.11.031
  39. Bala R, Singh V, Rajender S, Singh K. Environment, lifestyle, and female infertility. Reprod Sci. 2021;28(3):617–638. doi: 10.1007/s43032-020-00279-3
  40. Biryukova DA, Amyan TS, Gavisova AA, et al. The effect of stress on the female reproductive system: pathophysiology and neuroendocrine interactions. Akusherstvo i Ginekologiya. 2023;(11):36–42. doi: 10.18565/aig.2023.175 EDN: JKJWDK
  41. Pignolo RJ, Passos JF, Khosla S, et al. Reducing senescent cell burden in aging and disease. Trends Mol Med. 2020;26(7):630–638. doi: 10.1016/j.molmed.2020.03.005
  42. Paez-Ribes M, Gonzalez-Gualda E, Doherty GJ, Munoz-Espin D. Targeting senescent cells in translational medicine. EMBO Mol Med. 2019;11(12):e10234. doi: 10.15252/emmm.201810234
  43. Dou X, Sun Y, Li J, et al. Short-term rapamycin treatment increases ovarian lifespan in young and middle-aged female mice. Aging Cell. 2017;16(4):825–836. doi: 10.1111/acel.12617

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».