Automated analysis of animal behavior and its relation to key aspects of the environment reveals new cognitive specializations of neurons

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A thorough analysis of animal behavior is essential for examining the relationship between specific neuron activations with the elements of the external environment, behavior, or internal state. Machine learning techniques have made some advancements in automatic segmentation of animal behavior based on data concerning the location of animal body parts [1–3]. At present, these methods cannot achieve the level of segmentation accuracy desired or make correlations between an animal’s behavioral acts and key environmental factors. To address this issue, the authors have created a software package that can extract a variety of behavioral variables from video recordings of animals in experimental settings, enabling mathematical analysis of a behavioral act continuum.

The identification of specific aspects of an animal’s anatomy is crucial for extracting a vast array of behavioral variables. In order to accomplish this task, our team employed DeepLabCut, an accessible toolkit for tracking experimental animal behavior that operates on the principle of transfer learning through deep neural networks. We have devised a technique to ascertain the positions of animal body parts in diverse behavioral situations, resulting in a body parts collection meeting two criteria: offering superior responsiveness to small motor movements of the animal and delivering a high percentage of correct body part locations. In scenarios employing camera shooting from above, such a collection encompasses the nose, ears, tail base, body center, forelimbs, hind limbs, and both flanks of the animal’s body.

Next, we created software tools to extract and annotate behavioral variables from data on animal kinematics in various cognitive tasks. Our automated system comprises two main scripting modules: CreatePreset and BehaviorAnalyzer. The CreatePreset module interacts with users to select the type of arena geometry, object location, and necessary temporal and spatial parameters for analysis. The script’s result saves as a mat-file for analyzing the behavior of all experiment videos, assuming a constant relative position of the arena and the video camera alongside the experiment’s design. The BehaviorAnalyzer module conducts initial processing on time series data consisting of coordinates of an animal’s body parts. This results in the formation of a kinematogram, which details the kinematics of the body parts. The module then isolates individual behavioral acts of the animal and annotates its behavior based on motivational and environmental factors.

Using mutual information-based methods, we analyzed the specialization of hippocampal CA1 neurons in animals as they explored arenas with varying degrees of novelty. Through the analysis, we have identified neurons that exhibit selectivity in relation to specific continuous kinematic parameters governing the posture and trajectory of the animal. These parameters include the animal’s location in the arena space (X and Y coordinates), as well as the speed and angle of rotation of the animal’s head (i.e. absolute orientation in the arena). Neurons specialized in discrete acts of behavior were identified, including rests, locomotions, freezing, rears, and acts of interaction with objects. Furthermore, a selective activation of neurons was found with regard to an additional set of distinct parameters, which combine the animal’s location in the arena and its speed.

全文:

A thorough analysis of animal behavior is essential for examining the relationship between specific neuron activations with the elements of the external environment, behavior, or internal state. Machine learning techniques have made some advancements in automatic segmentation of animal behavior based on data concerning the location of animal body parts [1–3]. At present, these methods cannot achieve the level of segmentation accuracy desired or make correlations between an animal’s behavioral acts and key environmental factors. To address this issue, the authors have created a software package that can extract a variety of behavioral variables from video recordings of animals in experimental settings, enabling mathematical analysis of a behavioral act continuum.

The identification of specific aspects of an animal’s anatomy is crucial for extracting a vast array of behavioral variables. In order to accomplish this task, our team employed DeepLabCut, an accessible toolkit for tracking experimental animal behavior that operates on the principle of transfer learning through deep neural networks. We have devised a technique to ascertain the positions of animal body parts in diverse behavioral situations, resulting in a body parts collection meeting two criteria: offering superior responsiveness to small motor movements of the animal and delivering a high percentage of correct body part locations. In scenarios employing camera shooting from above, such a collection encompasses the nose, ears, tail base, body center, forelimbs, hind limbs, and both flanks of the animal’s body.

Next, we created software tools to extract and annotate behavioral variables from data on animal kinematics in various cognitive tasks. Our automated system comprises two main scripting modules: CreatePreset and BehaviorAnalyzer. The CreatePreset module interacts with users to select the type of arena geometry, object location, and necessary temporal and spatial parameters for analysis. The script’s result saves as a mat-file for analyzing the behavior of all experiment videos, assuming a constant relative position of the arena and the video camera alongside the experiment’s design. The BehaviorAnalyzer module conducts initial processing on time series data consisting of coordinates of an animal’s body parts. This results in the formation of a kinematogram, which details the kinematics of the body parts. The module then isolates individual behavioral acts of the animal and annotates its behavior based on motivational and environmental factors.

Using mutual information-based methods, we analyzed the specialization of hippocampal CA1 neurons in animals as they explored arenas with varying degrees of novelty. Through the analysis, we have identified neurons that exhibit selectivity in relation to specific continuous kinematic parameters governing the posture and trajectory of the animal. These parameters include the animal’s location in the arena space (X and Y coordinates), as well as the speed and angle of rotation of the animal’s head (i.e. absolute orientation in the arena). Neurons specialized in discrete acts of behavior were identified, including rests, locomotions, freezing, rears, and acts of interaction with objects. Furthermore, a selective activation of neurons was found with regard to an additional set of distinct parameters, which combine the animal’s location in the arena and its speed.

ADDITIONAL INFORMATION

Authors’ contribution. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

Funding sources. This work was supported by the Interdisciplinary Scientific and Educational School of Moscow University “Brain, Cognitive Systems, Artificial Intelligence” and by Nonprofit Foundation for the Development of Science and Education “Intellect”.

Competing interests. The authors declare that they have no competing interests.

×

作者简介

V. Plusnin

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: witkax@mail.ru
俄罗斯联邦, Moscow

N. Pospelov

Lomonosov Moscow State University

Email: witkax@mail.ru
俄罗斯联邦, Moscow

V. Sotskov

Lomonosov Moscow State University

Email: witkax@mail.ru
俄罗斯联邦, Moscow

N. Dokukin

Lomonosov Moscow State University

Email: witkax@mail.ru
俄罗斯联邦, Moscow

O. Rogozhnikova

Lomonosov Moscow State University

Email: witkax@mail.ru
俄罗斯联邦, Moscow

K. Toropova

Lomonosov Moscow State University

Email: witkax@mail.ru
俄罗斯联邦, Moscow

O. Ivashkina

Lomonosov Moscow State University

Email: witkax@mail.ru
俄罗斯联邦, Moscow

K. Anokhin

Lomonosov Moscow State University; Research Institute of Normal Physiology named after P.K. Anokhin

Email: witkax@mail.ru
俄罗斯联邦, Moscow; Moscow

参考

  1. Weinreb C, Osman MAM, Zhang L, et al. Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics. bioRxiv. 2023;2023.03.16.532307. doi: 10.1101/2023.03.16.532307
  2. Hsu AI, Yttri EA. B-SOiD, an open-source unsupervised algorithm for identification and fast prediction of behaviors. Nat Commun. 2021;12(1):5188. doi: 10.1038/s41467-021-25420-x
  3. Mathis A, Mamidanna P, Cury KM, et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci. 2018;21(9):1281–1289. doi: 10.1038/s41593-018-0209-y

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».