Structural scheme of a laser-initiated pyrocartridge for use in advanced aerospace systems and its justification by numerical simulation methods
- Autores: Avatinyan G.A.1
-
Afiliações:
- D. I. Mendeleev Russian University of Chemical Technology
- Edição: Volume 15, Nº 2 (2022)
- Páginas: 96-101
- Seção: Articles
- URL: https://bakhtiniada.ru/2305-9117/article/view/286750
- DOI: https://doi.org/10.30826/CE22150209
- EDN: https://elibrary.ru/EZBNFQ
- ID: 286750
Citar
Resumo
The paper briefly analyzes the advantages and prospects for the development of laser-initiated pyrotechnics, the existing developments in this area and their current problems. A structural scheme of a laser initiated pyrocartridge, a scheme for focusing light to initiate a pyrotechnic charge, and a method for implementing control of the pressure pulse generated by it are proposed. Numerical simulation methods have been used to study the behavior of the pyrocartridge design under static high-pressure loading and the possibility of generating various pressure pulses in the working volume of spacecraft pyrounits during the outflow of gases from the pyrocartridge after charge initiation.
Palavras-chave
Sobre autores
Grigoriy Avatinyan
D. I. Mendeleev Russian University of Chemical Technology
Autor responsável pela correspondência
Email: agra89@mail.ru
(b. 1989) – Candidate of Science in technology, research scientist
Rússia, 9 Miusskaya Sq., Moscow 125047Bibliografia
- Bement, L. J., and M. L. Schimmel. 1995. A manual for pyrotechnic design, development and qualification. Hampton, VA: National Aeronautics and Space Administration Langley Research Center, 1995. 84 p.
- GOST R 53190-2008 (MEK 60068-2-81:2003). 2008. Metody ispytaniy na stoykost’ k mekhanicheskim vneshnim vozdeystvuyushchim faktoram mashin, priborov i drugikh tekhnicheskikh izdeliy. Ispytaniya na udar s vosproizvedeniem udarnogo spektra [Test methods for resistance to mechanical external factors of machines, devices, and other technical products. Impact tests with reproduction of the shock spectrum]. Moscow: Standardinform Publs. 24 p.
- Pustobaev, M. V. 2015. Metodika ispytaniy bortovoy apparatury kosmicheskikh apparatov na stoykost’ k udarnym vozdeystviyam ot srabatyvaniya pirosredstv [Method for testing the onboard equipment of spacecraft for resistance to impact from the operation of pyrotechnics]. Moscow. PhD Diss. 145 p.
- De Yong, L., T. Nguyen, and J. Waschl. 1995. Laser ignition of explosives, pyrotechnics and propellants: A review. DSTO Aeronautical and Maritime Research Laboratory. 67 p.
- Patterson, S. 2007. Advances in high power, high efficiency, high brightness fiber coupled diode lasers from 635-nm to 1900-nm and beyond. 20th Annual Solid State and Diode Laser Technology Review.
- Bao, L., P. Leisher, J. Wang, M. Devito, D. Xu, and M. Grimshaw. 2011. High reliability and high performance of 9xx nm single emitter laser diodes. Proc. SPIE 7918:791806–791812.
- Medvedev, V. V., V. P. Tsipilev, and A. A. Reshetov. 2005. Zazhiganie pirotekhnicheskogo sostava (perkhlo-rat ammoniya + ul’tradispersnyy alyuminiy) lazernymiimpul’sami [Ignition of a pyrotechnic composition (ammonium perchlorate + ultrafine aluminum) with laser pulses]. Bulletin of the Tomsk Polytechnic University 308(2):83–86.
- Yang, L., and V. Menichelli. 1974. Optically detonated explosive device. Patent U.S. No. 3,812,783.
- Tolstunov, S. A., and G. P. Paramonov. 2011. Predokhranitel’nyy detonator [Safety detonator]. Patent RF No. 2424490. (IPC F42C 19/09, F42B 3/113.)
- Maznina, Yu. A., E. V. Pichuzhkina, M. V. Melent’ev, Yu. A. Kulagin, V. Yu. Uspenskiy, and A. V. Timoshin. 2021. Lazernyy piroenergodatchik [Laser pyroenergy source]. Patent RF No. 206625. (IPC F42B 3/113.)
Arquivos suplementares
