Structural scheme of a laser-initiated pyrocartridge for use in advanced aerospace systems and its justification by numerical simulation methods
- Authors: Avatinyan G.A.1
-
Affiliations:
- D. I. Mendeleev Russian University of Chemical Technology
- Issue: Vol 15, No 2 (2022)
- Pages: 96-101
- Section: Articles
- URL: https://bakhtiniada.ru/2305-9117/article/view/286750
- DOI: https://doi.org/10.30826/CE22150209
- EDN: https://elibrary.ru/EZBNFQ
- ID: 286750
Cite item
Abstract
The paper briefly analyzes the advantages and prospects for the development of laser-initiated pyrotechnics, the existing developments in this area and their current problems. A structural scheme of a laser initiated pyrocartridge, a scheme for focusing light to initiate a pyrotechnic charge, and a method for implementing control of the pressure pulse generated by it are proposed. Numerical simulation methods have been used to study the behavior of the pyrocartridge design under static high-pressure loading and the possibility of generating various pressure pulses in the working volume of spacecraft pyrounits during the outflow of gases from the pyrocartridge after charge initiation.
Keywords
About the authors
Grigoriy A. Avatinyan
D. I. Mendeleev Russian University of Chemical Technology
Author for correspondence.
Email: agra89@mail.ru
(b. 1989) – Candidate of Science in technology, research scientist
Russian Federation, 9 Miusskaya Sq., Moscow 125047References
- Bement, L. J., and M. L. Schimmel. 1995. A manual for pyrotechnic design, development and qualification. Hampton, VA: National Aeronautics and Space Administration Langley Research Center, 1995. 84 p.
- GOST R 53190-2008 (MEK 60068-2-81:2003). 2008. Metody ispytaniy na stoykost’ k mekhanicheskim vneshnim vozdeystvuyushchim faktoram mashin, priborov i drugikh tekhnicheskikh izdeliy. Ispytaniya na udar s vosproizvedeniem udarnogo spektra [Test methods for resistance to mechanical external factors of machines, devices, and other technical products. Impact tests with reproduction of the shock spectrum]. Moscow: Standardinform Publs. 24 p.
- Pustobaev, M. V. 2015. Metodika ispytaniy bortovoy apparatury kosmicheskikh apparatov na stoykost’ k udarnym vozdeystviyam ot srabatyvaniya pirosredstv [Method for testing the onboard equipment of spacecraft for resistance to impact from the operation of pyrotechnics]. Moscow. PhD Diss. 145 p.
- De Yong, L., T. Nguyen, and J. Waschl. 1995. Laser ignition of explosives, pyrotechnics and propellants: A review. DSTO Aeronautical and Maritime Research Laboratory. 67 p.
- Patterson, S. 2007. Advances in high power, high efficiency, high brightness fiber coupled diode lasers from 635-nm to 1900-nm and beyond. 20th Annual Solid State and Diode Laser Technology Review.
- Bao, L., P. Leisher, J. Wang, M. Devito, D. Xu, and M. Grimshaw. 2011. High reliability and high performance of 9xx nm single emitter laser diodes. Proc. SPIE 7918:791806–791812.
- Medvedev, V. V., V. P. Tsipilev, and A. A. Reshetov. 2005. Zazhiganie pirotekhnicheskogo sostava (perkhlo-rat ammoniya + ul’tradispersnyy alyuminiy) lazernymiimpul’sami [Ignition of a pyrotechnic composition (ammonium perchlorate + ultrafine aluminum) with laser pulses]. Bulletin of the Tomsk Polytechnic University 308(2):83–86.
- Yang, L., and V. Menichelli. 1974. Optically detonated explosive device. Patent U.S. No. 3,812,783.
- Tolstunov, S. A., and G. P. Paramonov. 2011. Predokhranitel’nyy detonator [Safety detonator]. Patent RF No. 2424490. (IPC F42C 19/09, F42B 3/113.)
- Maznina, Yu. A., E. V. Pichuzhkina, M. V. Melent’ev, Yu. A. Kulagin, V. Yu. Uspenskiy, and A. V. Timoshin. 2021. Lazernyy piroenergodatchik [Laser pyroenergy source]. Patent RF No. 206625. (IPC F42B 3/113.)
Supplementary files
