Initiating ability of salts of 5,5 -azotetrazole and their mixtures with oxidants
- Authors: Lazarev I.V.1, Konov E.A.1, Levshenkov A.I.1, Bogdanova L.E.1
-
Affiliations:
- D. I. Mendeleev Russian University of Chemical Technology
- Issue: Vol 15, No 2 (2022)
- Pages: 88-95
- Section: Articles
- URL: https://bakhtiniada.ru/2305-9117/article/view/286749
- DOI: https://doi.org/10.30826/CE22150208
- EDN: https://elibrary.ru/JCEGYA
- ID: 286749
Cite item
Abstract
The AzT salts are interesting as perspective oxygen-free, high-enthalpy, and low-sensitivity components of energetic compositions. The possibility of deflagration-to-detonation transition in salts of 5,5-azotetrazole with the nitrogenous bases (hydrazine, hydroxylamine, and triaminoguanidine) is investigated. It is shown that in the copper tubes in enclosed and semienclosed volume, combustion of salts of 5,5-azotetrazole of hydrazine and triaminoguanidine transitions to the convective burning regime without transition to detonation. These salts do not exhibit the initiating ability for PETN. Only the salt of 5,5-azotetrazole with hydroxylamine exhibit such an initiating ability, for which the minimum initiating charge for TNT is determined. The possibility of deflagration-to-detonation transition and initiating ability of the coprecipitated stoichiometric mixtures of salts of 5,5-azotetrazole with triaminoguanidine and ammonia with oxidizers (chlorate and potassium perchlorate) have been investigated. It is shown that in the copper tubes, in these mixtures, there is a transition to convective burning regime without transition to detonation as in previously investigated individual salts. In contrast to the individual salts of 5,5-azotetrazole, mixtures of salts of 5,5-azotetrazole with triaminoguanidine and ammonia with potassium chlorate exhibit an initiating ability for PETN.
About the authors
Iiya V. Lazarev
D. I. Mendeleev Russian University of Chemical Technology
Author for correspondence.
Email: Ilya.v.lazarev@gmail.com
(b. 1994) — student
Russian Federation, 9 Miusskaya Sq., Moscow 125047Evgeny A. Konov
D. I. Mendeleev Russian University of Chemical Technology
Email: ekonov@gmail.com
(b. 1994) — student
Russian Federation, 9 Miusskaya Sq., Moscow 125047Anton I. Levshenkov
D. I. Mendeleev Russian University of Chemical Technology
Email: antlew@rambler.ru
(b. 1969) — Candidate of Science in chemistry, associate professor
Russian Federation, 9 Miusskaya Sq., Moscow 125047Ludmila E. Bogdanova
D. I. Mendeleev Russian University of Chemical Technology
Email: akhapkina-luda@rambler.ru
(b. 1988) — engineer
Russian Federation, 9 Miusskaya Sq., Moscow 125047References
- Thiele, J. 1898. Ueber Azo- und Hydrazoverbindungen des Tetrazols. Liebigs Ann. 303:57–78.
- Hiskey, M. A., N. Goldman, and J. R. Stine. 1998. High nitrogen energetic materials derived from azotetrazolate. J. Energ. Mater. 16:119–127.
- Hammerl, A., T. M. Klapotke, H. Noth, and M. Warchhold. 2001. [N2H5]2+[N4C–N=N–CN4]2-: A new high-nitrogen high-energetic material. Inorg. Chem. 40:3570–3575.
- Sivabalan, R., M. B. Talawar, N. Senthilkumar, B. Kavitha, and S. N. Asthana. 2004. Studies on azotetrazolate based high nitrogen content high energy materials potential additives for rocket propellants. J. Therm. Anal. Calorim. 78:781–791.
- Hammerl, A., M. A. Hiskey, G. Holl, T. M. Klapotke, K. Polborn, J. Stierstotfer, and J. J. Weigand. 2005. Azidoformamidium and guanidinium 5,5 -azotetrazolate salts. Chem. Mater. 17:3784–3793.
- Sivabalan, R., M. Anniyappan, S. J. Pawar, M. B. Talawar, G. M. Gore, S. Venugopalan, and B. R. Gandhe. 2006. Synthesis, characterization and thermolysis studies on tiazole and tetrazole based high nitrogen content high energy materials. J. Hazard. Mater. 137(2):672–680.
- Tappan, B. C., A. N. Ali, S. F. Son, and T. B. Brill. 2006. Decomposition and ignition of the high-nitrogen compound triaminoguanidinium azotetrazolate. Propell. Explos. Pyrot. 31:163–167.
- Akhapkina, L. E., P. A. Postnikov, Min Tant M’e, A. I. Levshenkov, and V. P. Sinditskii. 2011. Sintez i issledovanie soley 5,5 -azotetrazola s azotistymi osnovaniyami [Synthesis on investigation of 5,5 -azotetrazole salts]. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology] 25(12):54–58.
- Levshenkova, L. E., V. P. Sinditskii, and A. I. Levshenkov. 2013. Issledovanie termicheskogo raspada guanidinovoy i ammonievoy soley 5,5 -azotetrazola [Study of thermal decomposition of guanidinium and ammonium 5,5 -azotetrazole salts]. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology] 27(2):131–136.
- Levshenkova, L. E., N. A. Muriljov, W. H. Aung, A. I. Levshenkov, and V. P. Sinditskii. 2015. Raspad onievykh soley 5,5 -azotetrazola v zhidkoy faze [The decomposition of onium 5,5 -azotetrazole salts in liquid]. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology] 29(8):53–55.
- Levshenkova, L. E., and A. I. Levshenkov. 2015. Sintez i svoystva soley 5,5 -azotetrazola s azotistymi osnovaniyami [Synthesis on investigation of 5,5 -azotetrazole salts]. Vestnik Buryatskogo gos. un-ta [Bulletin of the Buryat State University] 3:31–34.
- Levshenkov, A. I., and L. E. Levshenkova. 2015. Gorenie smesey onievykh soley 5,5 -azotetrazola s okislitelyami [Combustion of mixtures of onium salts of 5.5 -azotetrazole with oxidizers]. Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy] 17(3):331–338.
- Han, Y. H., Y. Z. Yang, Z. M. Du, Z. M. Li, Q. Yao, Y. H. Wang, and Z. Y. Hu. 2016. The formulation design and performance test of gas generators based on guanidinium azotetrazolate. Propell. Explos. Pyrot. 42:276–282.
- Sinditskii, V. P., L. E. Bogdanova, and A. I. Levshenkov. 2019. High-energy salts of 5.5 -azotetrazole. 2. Burning behavior and the combustion mechanism. Combust. Explo. Shock Waves 55(5):534–546.
- Abe, M., T. Ogura, Ya. Miyata, K. Okamoto, Sh. Date, M. Kohga, and K. Hasue. 2008. Evaluation of gas generating ability of some tetrazoles and copper (II) oxide mixtures through closed vessel test and theoretical calculation. Sci. Technol. Energ. Ma. 69(6):183–190.
- Bucerius, K. M., F. W. Wasmann, and K. Menke. 1993. Stable, nitrogen-rich composition. Patent 5,198,046. 1993. 4 p.
- Sinditskii, V. P., L. E. Bogdanova, K. O. Kapranov, A. I. Levshenkov, and V. I. Kolesov. 2019. High-energy salts of 5,5-azotetrazole. 1. Thermochemistry and thermal decomposition. Combust. Explo. Shock Waves 55(3):308–326.
- Antipov, D. S., A. A. Petreykin, A. A. Kunakov, L. E. Levshenkova, and A. I. Levshenkov. 2016. Detonatsionnaya sposobnost’ prostykh ammonalov v zaryadakh malykh diametrov [Capacity detonation of binary ammonal in charge of small diameters]. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology] 30(8):8–9.
- Petreykin, A. A., D. S. Antipov, A. A. Kunakov, L. E. Levshenkova, and A. I. Levshenkov. 2016. Razrabotka metodiki opredeleniya minimal’nykh initsiiruyushchikh zaryadov dlya nizkoplotnykh brizantnykh VV [Development of the method for determining the minimum initiation charge low density explosives]. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology] 30(8):37–38.
- Bentivoglio, G., G. Laus, V. Kahlenberg, G. Nauer, and H. Schottenberger. 2008. Crystal structure of bis(hydroxylammonium) 5,5 -azotetrazolate dihydrate, (NH3OH)2(C2N10) 2H3O. Z. Kristallogr. 223:425–426.
Supplementary files
