Initiating ability of salts of 5,5 -azotetrazole and their mixtures with oxidants
- 作者: Lazarev I.V.1, Konov E.A.1, Levshenkov A.I.1, Bogdanova L.E.1
-
隶属关系:
- D. I. Mendeleev Russian University of Chemical Technology
- 期: 卷 15, 编号 2 (2022)
- 页面: 88-95
- 栏目: Articles
- URL: https://bakhtiniada.ru/2305-9117/article/view/286749
- DOI: https://doi.org/10.30826/CE22150208
- EDN: https://elibrary.ru/JCEGYA
- ID: 286749
如何引用文章
详细
The AzT salts are interesting as perspective oxygen-free, high-enthalpy, and low-sensitivity components of energetic compositions. The possibility of deflagration-to-detonation transition in salts of 5,5-azotetrazole with the nitrogenous bases (hydrazine, hydroxylamine, and triaminoguanidine) is investigated. It is shown that in the copper tubes in enclosed and semienclosed volume, combustion of salts of 5,5-azotetrazole of hydrazine and triaminoguanidine transitions to the convective burning regime without transition to detonation. These salts do not exhibit the initiating ability for PETN. Only the salt of 5,5-azotetrazole with hydroxylamine exhibit such an initiating ability, for which the minimum initiating charge for TNT is determined. The possibility of deflagration-to-detonation transition and initiating ability of the coprecipitated stoichiometric mixtures of salts of 5,5-azotetrazole with triaminoguanidine and ammonia with oxidizers (chlorate and potassium perchlorate) have been investigated. It is shown that in the copper tubes, in these mixtures, there is a transition to convective burning regime without transition to detonation as in previously investigated individual salts. In contrast to the individual salts of 5,5-azotetrazole, mixtures of salts of 5,5-azotetrazole with triaminoguanidine and ammonia with potassium chlorate exhibit an initiating ability for PETN.
作者简介
Iiya Lazarev
D. I. Mendeleev Russian University of Chemical Technology
编辑信件的主要联系方式.
Email: Ilya.v.lazarev@gmail.com
(b. 1994) — student
俄罗斯联邦, 9 Miusskaya Sq., Moscow 125047Evgeny Konov
D. I. Mendeleev Russian University of Chemical Technology
Email: ekonov@gmail.com
(b. 1994) — student
俄罗斯联邦, 9 Miusskaya Sq., Moscow 125047Anton Levshenkov
D. I. Mendeleev Russian University of Chemical Technology
Email: antlew@rambler.ru
(b. 1969) — Candidate of Science in chemistry, associate professor
俄罗斯联邦, 9 Miusskaya Sq., Moscow 125047Ludmila Bogdanova
D. I. Mendeleev Russian University of Chemical Technology
Email: akhapkina-luda@rambler.ru
(b. 1988) — engineer
俄罗斯联邦, 9 Miusskaya Sq., Moscow 125047参考
- Thiele, J. 1898. Ueber Azo- und Hydrazoverbindungen des Tetrazols. Liebigs Ann. 303:57–78.
- Hiskey, M. A., N. Goldman, and J. R. Stine. 1998. High nitrogen energetic materials derived from azotetrazolate. J. Energ. Mater. 16:119–127.
- Hammerl, A., T. M. Klapotke, H. Noth, and M. Warchhold. 2001. [N2H5]2+[N4C–N=N–CN4]2-: A new high-nitrogen high-energetic material. Inorg. Chem. 40:3570–3575.
- Sivabalan, R., M. B. Talawar, N. Senthilkumar, B. Kavitha, and S. N. Asthana. 2004. Studies on azotetrazolate based high nitrogen content high energy materials potential additives for rocket propellants. J. Therm. Anal. Calorim. 78:781–791.
- Hammerl, A., M. A. Hiskey, G. Holl, T. M. Klapotke, K. Polborn, J. Stierstotfer, and J. J. Weigand. 2005. Azidoformamidium and guanidinium 5,5 -azotetrazolate salts. Chem. Mater. 17:3784–3793.
- Sivabalan, R., M. Anniyappan, S. J. Pawar, M. B. Talawar, G. M. Gore, S. Venugopalan, and B. R. Gandhe. 2006. Synthesis, characterization and thermolysis studies on tiazole and tetrazole based high nitrogen content high energy materials. J. Hazard. Mater. 137(2):672–680.
- Tappan, B. C., A. N. Ali, S. F. Son, and T. B. Brill. 2006. Decomposition and ignition of the high-nitrogen compound triaminoguanidinium azotetrazolate. Propell. Explos. Pyrot. 31:163–167.
- Akhapkina, L. E., P. A. Postnikov, Min Tant M’e, A. I. Levshenkov, and V. P. Sinditskii. 2011. Sintez i issledovanie soley 5,5 -azotetrazola s azotistymi osnovaniyami [Synthesis on investigation of 5,5 -azotetrazole salts]. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology] 25(12):54–58.
- Levshenkova, L. E., V. P. Sinditskii, and A. I. Levshenkov. 2013. Issledovanie termicheskogo raspada guanidinovoy i ammonievoy soley 5,5 -azotetrazola [Study of thermal decomposition of guanidinium and ammonium 5,5 -azotetrazole salts]. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology] 27(2):131–136.
- Levshenkova, L. E., N. A. Muriljov, W. H. Aung, A. I. Levshenkov, and V. P. Sinditskii. 2015. Raspad onievykh soley 5,5 -azotetrazola v zhidkoy faze [The decomposition of onium 5,5 -azotetrazole salts in liquid]. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology] 29(8):53–55.
- Levshenkova, L. E., and A. I. Levshenkov. 2015. Sintez i svoystva soley 5,5 -azotetrazola s azotistymi osnovaniyami [Synthesis on investigation of 5,5 -azotetrazole salts]. Vestnik Buryatskogo gos. un-ta [Bulletin of the Buryat State University] 3:31–34.
- Levshenkov, A. I., and L. E. Levshenkova. 2015. Gorenie smesey onievykh soley 5,5 -azotetrazola s okislitelyami [Combustion of mixtures of onium salts of 5.5 -azotetrazole with oxidizers]. Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy] 17(3):331–338.
- Han, Y. H., Y. Z. Yang, Z. M. Du, Z. M. Li, Q. Yao, Y. H. Wang, and Z. Y. Hu. 2016. The formulation design and performance test of gas generators based on guanidinium azotetrazolate. Propell. Explos. Pyrot. 42:276–282.
- Sinditskii, V. P., L. E. Bogdanova, and A. I. Levshenkov. 2019. High-energy salts of 5.5 -azotetrazole. 2. Burning behavior and the combustion mechanism. Combust. Explo. Shock Waves 55(5):534–546.
- Abe, M., T. Ogura, Ya. Miyata, K. Okamoto, Sh. Date, M. Kohga, and K. Hasue. 2008. Evaluation of gas generating ability of some tetrazoles and copper (II) oxide mixtures through closed vessel test and theoretical calculation. Sci. Technol. Energ. Ma. 69(6):183–190.
- Bucerius, K. M., F. W. Wasmann, and K. Menke. 1993. Stable, nitrogen-rich composition. Patent 5,198,046. 1993. 4 p.
- Sinditskii, V. P., L. E. Bogdanova, K. O. Kapranov, A. I. Levshenkov, and V. I. Kolesov. 2019. High-energy salts of 5,5-azotetrazole. 1. Thermochemistry and thermal decomposition. Combust. Explo. Shock Waves 55(3):308–326.
- Antipov, D. S., A. A. Petreykin, A. A. Kunakov, L. E. Levshenkova, and A. I. Levshenkov. 2016. Detonatsionnaya sposobnost’ prostykh ammonalov v zaryadakh malykh diametrov [Capacity detonation of binary ammonal in charge of small diameters]. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology] 30(8):8–9.
- Petreykin, A. A., D. S. Antipov, A. A. Kunakov, L. E. Levshenkova, and A. I. Levshenkov. 2016. Razrabotka metodiki opredeleniya minimal’nykh initsiiruyushchikh zaryadov dlya nizkoplotnykh brizantnykh VV [Development of the method for determining the minimum initiation charge low density explosives]. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology] 30(8):37–38.
- Bentivoglio, G., G. Laus, V. Kahlenberg, G. Nauer, and H. Schottenberger. 2008. Crystal structure of bis(hydroxylammonium) 5,5 -azotetrazolate dihydrate, (NH3OH)2(C2N10) 2H3O. Z. Kristallogr. 223:425–426.
补充文件
