Исследование влияния оксидов титана и циркония на прочностные характеристики наноразмерного гидроксиапатита
- Авторы: Сабанин К.И.1, Скачков В.М.2, Медянкина И.С.2, Богданова Е.А.2,3, Сабирзянов Н.А.2
-
Учреждения:
- Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
- Институт химии твердого тела Уральского отделения РАН
- АО «Гиредмет»
- Выпуск: № 16 (2024)
- Страницы: 981-994
- Раздел: Нанохимия
- URL: https://bakhtiniada.ru/2226-4442/article/view/319509
- DOI: https://doi.org/10.26456/pcascnn/2024.16.981
- EDN: https://elibrary.ru/RCFOWX
- ID: 319509
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Кирилл Игоревич Сабанин
Уральский федеральный университет имени первого Президента России Б.Н. Ельцинастудент 4 курс кафедры экспериментальной физики
Владимир Михайлович Скачков
Институт химии твердого тела Уральского отделения РАН
Email: skachkov@ihim.uran.ru
к.х.н., старший научный сотрудник лаборатории химии гетерогенных процессов
Ирина Сергеевна Медянкина
Институт химии твердого тела Уральского отделения РАНнаучный сотрудник лаборатории перспективных функциональных материалов для химических источник тока
Екатерина Анатольевна Богданова
Институт химии твердого тела Уральского отделения РАН; АО «Гиредмет»к.х.н., старший научный сотрудник лаборатории химии гетерогенных процессов, ФГБУН «Институт химии твердого тела Уральского отделения РАН»; ведущий научный сотрудник лаборатории электрохимических устройств для водородной энергетики, АО «Гиредмет»
Наиль Аделевич Сабирзянов
Институт химии твердого тела Уральского отделения РАНд.т.н., главный научный сотрудник, заведующий лабораторией химии гетерогенных процессов
Список литературы
- Adhikara, G. Bovine hydroxyapatite for bone tissue engineering: preparation, characterization, challenges, and future perspectives/ G. Adhikara, A.P. Maharani, A. Puspitasari et al. // European Polymer Journal. - 2024. - V. 214. - Art. № 113171. - 12 p. doi: 10.1016/j.eurpolymj.2024.113171.
- Pilliar, R.M. Porous calcium polyphosphate scaffolds for bone substitute applications - in vitro characterization / R.M. Pilliar, M.J. Filiaggi, J.D. Wells et al. // Biomaterials. - 2001. - V. 22. - I. 9. - P. 963-972. doi: 10.1016/S0142-9612(00)00261-1.
- Khalid, H. 4 - Basics of hydroxyapatite-structure, synthesis, properties, and clinical applications / H. Khalid, A.A. Chaudhry // Handbook of Ionic Substituted Hydroxyapatites; ed. by A.S. Khan, A.A. Chaudhry. In: Woodhead Publishing Series in Biomaterials. - Cambridge: Woodhead Publishing, 2020. - P. 85-115. doi: 10.1016/B978-0-08-102834-6.00004-5.
- Câmara, G.I.F. Biocomposite based on nanoscale calcium phosphate and collagen from Nile tilapia (Oreochromis niloticus) skin: properties and morphological features / G.I.F. Câmara, M. do L.L.R. Menezes, N.F. Vasconcelos et al. // Materials Letters. - 2020. - V. 279. - Art. № 128441. - 4 p. doi: 10.1016/j.matlet.2020.128441.
- Ofudje, E.A. Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications / E.A. Ofudje, A. Rajendran, A.I. Adeogun et al. // Advanced Powder Technology. - 2018. - V. 29. - I. 1. - P. 1-8. doi: 10.1016/j.apt.2017.09.008.
- Ramesh, S. Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications / S. Ramesh, Z.Z. Loo, C.Y. Tan et al. // Ceramics International. - 2018. - V. 44. - I. 9. - P. 10525-10530. doi: 10.1016/j.ceramint.2018.03.072.
- Баринов, С.М. Биокерамика на основе фосфатов кальция / С.М. Баринов, В.С. Комлев. - М.: Наука, 2006. - 204 с.
- Zhou, H. Nanoscale hydroxyapatite particles for bone tissue engineering / H. Zhou, J. Lee // Acta Biomaterialia. - 2011. - V. 7. - I. 7. - P. 2769-2781. doi: 10.1016/j.actbio.2011.03.019.
- Wang, H.X. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process / H.X. Wang, S.K. Guan, X. Wang et al. // Acta Biomaterialia - 2010. - V. 6. - I. 5. - P. 1743-1748. doi: 10.1016/j.actbio.2009.12.009.
- John, K.S. 2 - Mechanical biocompatibility of dental materials. Biocompatibility of dental biomaterials / K.S. John // Biocompatibility of Dental Biomaterials; ed. by R. Shelton. In: Woodhead Publishing Series in Biomaterials. - Cambridge: Woodhead Publishing, 2017. - P. 9-21. doi: 10.1016/B978-0-08-100884-3.00002-3.
- Placido, F. Titanium dioxide coatings for medical devices / F. Placido, A. McLean, A.A. Ogwu, W. Ademosu // In: Surgical Tools and Medical Devices; ed. by M.J. Jackson, W. Ahmed. - Cham: Springer, 2016. - pp. 81-91. doi: 10.1007/978-3-319-33489-9_3.
- Rempel, S.V. Impact of titanium monoxide stoichiometry and heat treatment on the properties of TiOy/HAp nanocomposite / S.V. Rempel, D.A. Eselevich, E.Yu. Gerasimov, A.A. Valeeva // Journal of Alloys and Compounds. - 2019. - V. 800. - P. 412-418. doi: 10.1016/j.jallcom.2019.06.057.
- Farzin, A.Comparative evaluation of biocompatibility of dense nanostructured and microstructured Hydroxyapatite/Titania composites / A. Farzin, M. Ahmadian, M.H. Fathi // Materials Science and Engineering: C. - 2013. - V. 33. - I. 4. - P. 2251-2257. doi: 10.1016/j.msec.2013.01.053.
- Khalajabadi, S.Z. In vitro biodegradation, electrochemical corrosion evaluations and mechanical properties of an Mg/HA/TiO2 nanocomposite for biomedical applications / S.Z. Khalajabadi, N. Ahmad, S. Izman et al. // Journal of Alloys and Compounds. - 2017. - V. 696. - P. 768-781. doi: 10.1016/j.jallcom.2016.11.106.
- He, Y. Microstructure evolution, electrochemical properties and in-vitro properties of Ti-Nb-Zr based biocomposite by hydroxyapatite bioceramic / Y. He, Y. Zhang, Y. Jiang et al. // Journal of Alloys and Compounds. - 2018. - V. 764. - P. 987-1002, doi: 10.1016/j.jallcom.2018.06.132.
- Prasad, V.J.S.N. Silver-doped ZrO2-TiO2 nanocomposite coatings on 316L stainless steel for enhanced corrosion resistance and bio applications / V.J.S.N. Prasad, F. Mayanglambam, P.N.V.V.L. Pramila Rani, P. Dobbidi // Surface and Coatings Technology. - 2024. - V. 493. - Part 1. - Art. № 131203. - 14 p. doi: 10.1016/j.surfcoat.2024.131203.
- Samanipour, F. Electrophoretic enhanced micro arc oxidation of ZrO2-HAp-TiO2 nanostructured porous layers / F. Samanipour, M.R. Bayati, H.R. Zargar et al. // Journal of Alloys and Compounds. - 2011. - V. 509. - I. 38. - P. 9351-9355. doi: 10.1016/j.jallcom.2011.07.035.
- Naji, Q.K. Investigations of structure and properties of layered bioceramic HA/TiO2 and ZrO2/TiO2 coatings on Ti-6Al-7Nb alloy by micro-arc oxidation / Q.K. Naji, J.M. Salman, N.M. Dawood // Materials Today Proceedings. - 2022. - V. 61. - Part 3. - P. 786-793. doi: 10.1016/j.matpr.2021.09.038.
- Богданова, Е.А. Получение биокомозитов на основе наноразмерного гидроксиапатита с соединениями титана / Е.А. Богданова, В.М. Скачков, К.В. Нефедова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 521-530. doi: 10.26456/pcascnn/2022.14.521.
- Богданова, Е.А. Влияние армирующих добавок на процессы спекания и упрочнения наноразмерного гидроксиапатита / Е.А. Богданова, И.М. Гиниятуллин, Д.И. Переверзев, В.М. Разгуляева // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2019. - Вып. 11. - С. 548-554. doi: 10.26456/pcascnn/2019.11.548.
- Пат. 2406693 Российская Федерация, МПК C01B25/32. Способ получения суспензии гидроксиапатита / Сабирзянов Н.А., Богданова Е.А., Хонина Т.Г.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Институт химии твердого тела УрО РАН. - № 2008140563/15; заявл. 13.10.08; опубл. 20.12.10, Бюл. № 35. - 5 с.
- Пат. 2652193 Российская Федерация, МПК C01B25/32. Способ получения суспензии апатита / Богданова Е.А., Сабирзянов Н.А., Скачков В.М.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Институт химии твердого тела УрО РАН. - № 2017113484; заявл. 19.04.17; опубл. 25.04.18, Бюл. № 12. - 5 с.
- Bogdanova, E.A. Formation of nanodimensional structures in precipitated hydroxyapatite by fluorine substitution / E.A. Bogdanova, V.М. Skachkov, I.S. Medyankina et al. // SN Applied Sciences. - 2020. - V. 2. - I. 9. - Art. № 1565. - 7 p. doi: 10.1007/s42452-020-03388-5.
Дополнительные файлы

