Исследование влияния оксидов титана и циркония на прочностные характеристики наноразмерного гидроксиапатита

Обложка

Цитировать

Полный текст

Аннотация

В статье обсуждается возможность дисперсного упрочнения наноструктурированного гидроксиапатита, синтезированного методом осаждения из раствора путем введения армирующих добавок нестехиометрического оксида титана и диоксида циркония. Упрочненный композиционный материал: гидроксиапатит - нестехиометрический оксид титана - диоксид циркония получали путем механохимичекого синтеза гидроксиапатита с допирующими компонентами с последующим отжигом при температуре 1000°C. Исходные компоненты и синтезированные образцы были аттестованы с использованием современных физико-химических методов анализа: рентгенофазовый анализ, дифференциальный термический анализ, сканирующая электронная микроскопия, анализ площади поверхности и пористости, дисперсионный анализ. Показано влияние качественного и количественного состава композита на протекание процессов спекания и прочностные характеристики исследуемых образцов в широком интервале температур 25-1200°С. Экспериментально установлено, что наиболее перспективной для разработки на ее основе биокомпозитов является система гидроксиапатит - 15% нестехиометрический оксид титана - 5% диоксид циркония. Композиционные материалы данного состава обладают плотной равномерной прочной структурой с высокой степенью кристалличности и развитой поверхностью, являются перспективным материалом для дальнейших исследований с целью внедрения его в медицинскую практику.

Об авторах

Кирилл Игоревич Сабанин

Уральский федеральный университет имени первого Президента России Б.Н. Ельцина

студент 4 курс кафедры экспериментальной физики

Владимир Михайлович Скачков

Институт химии твердого тела Уральского отделения РАН

Email: skachkov@ihim.uran.ru
к.х.н., старший научный сотрудник лаборатории химии гетерогенных процессов

Ирина Сергеевна Медянкина

Институт химии твердого тела Уральского отделения РАН

научный сотрудник лаборатории перспективных функциональных материалов для химических источник тока

Екатерина Анатольевна Богданова

Институт химии твердого тела Уральского отделения РАН; АО «Гиредмет»

к.х.н., старший научный сотрудник лаборатории химии гетерогенных процессов, ФГБУН «Институт химии твердого тела Уральского отделения РАН»; ведущий научный сотрудник лаборатории электрохимических устройств для водородной энергетики, АО «Гиредмет»

Наиль Аделевич Сабирзянов

Институт химии твердого тела Уральского отделения РАН

д.т.н., главный научный сотрудник, заведующий лабораторией химии гетерогенных процессов

Список литературы

  1. Adhikara, G. Bovine hydroxyapatite for bone tissue engineering: preparation, characterization, challenges, and future perspectives/ G. Adhikara, A.P. Maharani, A. Puspitasari et al. // European Polymer Journal. - 2024. - V. 214. - Art. № 113171. - 12 p. doi: 10.1016/j.eurpolymj.2024.113171.
  2. Pilliar, R.M. Porous calcium polyphosphate scaffolds for bone substitute applications - in vitro characterization / R.M. Pilliar, M.J. Filiaggi, J.D. Wells et al. // Biomaterials. - 2001. - V. 22. - I. 9. - P. 963-972. doi: 10.1016/S0142-9612(00)00261-1.
  3. Khalid, H. 4 - Basics of hydroxyapatite-structure, synthesis, properties, and clinical applications / H. Khalid, A.A. Chaudhry // Handbook of Ionic Substituted Hydroxyapatites; ed. by A.S. Khan, A.A. Chaudhry. In: Woodhead Publishing Series in Biomaterials. - Cambridge: Woodhead Publishing, 2020. - P. 85-115. doi: 10.1016/B978-0-08-102834-6.00004-5.
  4. Câmara, G.I.F. Biocomposite based on nanoscale calcium phosphate and collagen from Nile tilapia (Oreochromis niloticus) skin: properties and morphological features / G.I.F. Câmara, M. do L.L.R. Menezes, N.F. Vasconcelos et al. // Materials Letters. - 2020. - V. 279. - Art. № 128441. - 4 p. doi: 10.1016/j.matlet.2020.128441.
  5. Ofudje, E.A. Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications / E.A. Ofudje, A. Rajendran, A.I. Adeogun et al. // Advanced Powder Technology. - 2018. - V. 29. - I. 1. - P. 1-8. doi: 10.1016/j.apt.2017.09.008.
  6. Ramesh, S. Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications / S. Ramesh, Z.Z. Loo, C.Y. Tan et al. // Ceramics International. - 2018. - V. 44. - I. 9. - P. 10525-10530. doi: 10.1016/j.ceramint.2018.03.072.
  7. Баринов, С.М. Биокерамика на основе фосфатов кальция / С.М. Баринов, В.С. Комлев. - М.: Наука, 2006. - 204 с.
  8. Zhou, H. Nanoscale hydroxyapatite particles for bone tissue engineering / H. Zhou, J. Lee // Acta Biomaterialia. - 2011. - V. 7. - I. 7. - P. 2769-2781. doi: 10.1016/j.actbio.2011.03.019.
  9. Wang, H.X. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process / H.X. Wang, S.K. Guan, X. Wang et al. // Acta Biomaterialia - 2010. - V. 6. - I. 5. - P. 1743-1748. doi: 10.1016/j.actbio.2009.12.009.
  10. John, K.S. 2 - Mechanical biocompatibility of dental materials. Biocompatibility of dental biomaterials / K.S. John // Biocompatibility of Dental Biomaterials; ed. by R. Shelton. In: Woodhead Publishing Series in Biomaterials. - Cambridge: Woodhead Publishing, 2017. - P. 9-21. doi: 10.1016/B978-0-08-100884-3.00002-3.
  11. Placido, F. Titanium dioxide coatings for medical devices / F. Placido, A. McLean, A.A. Ogwu, W. Ademosu // In: Surgical Tools and Medical Devices; ed. by M.J. Jackson, W. Ahmed. - Cham: Springer, 2016. - pp. 81-91. doi: 10.1007/978-3-319-33489-9_3.
  12. Rempel, S.V. Impact of titanium monoxide stoichiometry and heat treatment on the properties of TiOy/HAp nanocomposite / S.V. Rempel, D.A. Eselevich, E.Yu. Gerasimov, A.A. Valeeva // Journal of Alloys and Compounds. - 2019. - V. 800. - P. 412-418. doi: 10.1016/j.jallcom.2019.06.057.
  13. Farzin, A.Comparative evaluation of biocompatibility of dense nanostructured and microstructured Hydroxyapatite/Titania composites / A. Farzin, M. Ahmadian, M.H. Fathi // Materials Science and Engineering: C. - 2013. - V. 33. - I. 4. - P. 2251-2257. doi: 10.1016/j.msec.2013.01.053.
  14. Khalajabadi, S.Z. In vitro biodegradation, electrochemical corrosion evaluations and mechanical properties of an Mg/HA/TiO2 nanocomposite for biomedical applications / S.Z. Khalajabadi, N. Ahmad, S. Izman et al. // Journal of Alloys and Compounds. - 2017. - V. 696. - P. 768-781. doi: 10.1016/j.jallcom.2016.11.106.
  15. He, Y. Microstructure evolution, electrochemical properties and in-vitro properties of Ti-Nb-Zr based biocomposite by hydroxyapatite bioceramic / Y. He, Y. Zhang, Y. Jiang et al. // Journal of Alloys and Compounds. - 2018. - V. 764. - P. 987-1002, doi: 10.1016/j.jallcom.2018.06.132.
  16. Prasad, V.J.S.N. Silver-doped ZrO2-TiO2 nanocomposite coatings on 316L stainless steel for enhanced corrosion resistance and bio applications / V.J.S.N. Prasad, F. Mayanglambam, P.N.V.V.L. Pramila Rani, P. Dobbidi // Surface and Coatings Technology. - 2024. - V. 493. - Part 1. - Art. № 131203. - 14 p. doi: 10.1016/j.surfcoat.2024.131203.
  17. Samanipour, F. Electrophoretic enhanced micro arc oxidation of ZrO2-HAp-TiO2 nanostructured porous layers / F. Samanipour, M.R. Bayati, H.R. Zargar et al. // Journal of Alloys and Compounds. - 2011. - V. 509. - I. 38. - P. 9351-9355. doi: 10.1016/j.jallcom.2011.07.035.
  18. Naji, Q.K. Investigations of structure and properties of layered bioceramic HA/TiO2 and ZrO2/TiO2 coatings on Ti-6Al-7Nb alloy by micro-arc oxidation / Q.K. Naji, J.M. Salman, N.M. Dawood // Materials Today Proceedings. - 2022. - V. 61. - Part 3. - P. 786-793. doi: 10.1016/j.matpr.2021.09.038.
  19. Богданова, Е.А. Получение биокомозитов на основе наноразмерного гидроксиапатита с соединениями титана / Е.А. Богданова, В.М. Скачков, К.В. Нефедова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 521-530. doi: 10.26456/pcascnn/2022.14.521.
  20. Богданова, Е.А. Влияние армирующих добавок на процессы спекания и упрочнения наноразмерного гидроксиапатита / Е.А. Богданова, И.М. Гиниятуллин, Д.И. Переверзев, В.М. Разгуляева // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2019. - Вып. 11. - С. 548-554. doi: 10.26456/pcascnn/2019.11.548.
  21. Пат. 2406693 Российская Федерация, МПК C01B25/32. Способ получения суспензии гидроксиапатита / Сабирзянов Н.А., Богданова Е.А., Хонина Т.Г.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Институт химии твердого тела УрО РАН. - № 2008140563/15; заявл. 13.10.08; опубл. 20.12.10, Бюл. № 35. - 5 с.
  22. Пат. 2652193 Российская Федерация, МПК C01B25/32. Способ получения суспензии апатита / Богданова Е.А., Сабирзянов Н.А., Скачков В.М.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Институт химии твердого тела УрО РАН. - № 2017113484; заявл. 19.04.17; опубл. 25.04.18, Бюл. № 12. - 5 с.
  23. Bogdanova, E.A. Formation of nanodimensional structures in precipitated hydroxyapatite by fluorine substitution / E.A. Bogdanova, V.М. Skachkov, I.S. Medyankina et al. // SN Applied Sciences. - 2020. - V. 2. - I. 9. - Art. № 1565. - 7 p. doi: 10.1007/s42452-020-03388-5.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».