Metal membranes for hydrogen purification: problems, trends and prospects of application
- Autores: Polukhin V.A.1, Estemirova S.K.1
-
Afiliações:
- Institute of Metallurgy of the Ural Branch of the RAS
- Edição: Nº 16 (2024)
- Páginas: 686-710
- Seção: Physical and chemical foundations of nanotechnology
- URL: https://bakhtiniada.ru/2226-4442/article/view/319471
- DOI: https://doi.org/10.26456/pcascnn/2024.16.686
- EDN: https://elibrary.ru/AEBRCA
- ID: 319471
Citar
Texto integral
Resumo
Sobre autores
Valery Polukhin
Institute of Metallurgy of the Ural Branch of the RAS
Email: p.valery47@yandex.ru
Dr. Sc., Chief Researcher.
Svetlana Estemirova
Institute of Metallurgy of the Ural Branch of the RAS
Email: esveta100@mail.ru
Ph. D. Senior Researcher.
Bibliografia
- Bernardo, G. Recent advances in membrane technologies for hydrogen purification / G. Bernardo, T. Araújo, T.S. Lopes, J. Sousa, A. Mendes // International Journal of Hydrogen Energy. - 2020. - V. 45. - I. 12. - P. 7313-7338. doi: 10.1016/j.ijhydene.2019.06.162.
- Palladium membrane technology for hydrogen production, carbon capture and other applications: principles, energy production and other applications; ed. by A. Doukelis, K. Panopoulos, A. Koumanakos, E. Kakaras // Woodhead Publishing Series in Energy. - V. 68. - Amsterdam: Woodhead Publishing, 2014. - 402 p. doi: 10.1016/C2013-0-16496-3.
- Ockwig, N.W. Membranes for hydrogen Separation / N.W. Ockwig, T.M. Nenoff // Chemical Reviews. - 2007. - V. 107. - I. 10. - P. 4078-4110. doi: 10.1021/cr0501792.
- Yukawa H. 13 - Design of group 5 metal-based alloy membranes with high hydrogen permeability and strong resistance to hydrogen embrittlement / H. Yukawa, T. Nambu, Y. Matsumoto // Advances in Hydrogen Production, Storage and Distribution; ed. by A. Basile, A. Iulianelli. In: Woodhead Publishing Series in Energy. - V. 63. - Amsterdam: Woodhead Publishing, 2014. - P. 341-367. doi: 10.1533/9780857097736.3.341.
- Stenina, I. Modern technologies of hydrogen production / I. Stenina, A. Yaroslavtsev // Processes. - 2023. - V. 11. - I. 1. - Art. № 56. - 34 p. doi: 10.3390/pr11010056.
- Cerone, N. Recent advancements in Pd-based membranes for hydrogen separation / N. Cerone, G.D. Zito, C. Florio, L. Fabbiano, F. Zimbardi // Energies. - 2024. - V. 17. - I. 16. - Art. № 4095. - 15 p. doi: 10.3390/en17164095.
- Li, P. Recent developments in membranes for efficient hydrogen purification / P. Li, Z. Wang, Z. Qiao et al. // Journal of Membrane Science. - 2015. - V. 495. - P. 130-168. doi: 10.1016/j.memsci.2015.08.010.
- Buxbaum, R.E. Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium / R.E. Buxbaum, A.B. Kinney // Industrial & Engineering Chemistry Research. - 1996. - V. 35. - I. 2. - P. 530-537. doi: 10.1021/ie950105o.
- Wipf, H. Solubility and diffusion of hydrogen in pure metals and alloys / H. Wipf // Physica Scripta. - 2001. - V. 2001. - № T94. - P. 43-51. doi: 10.1238/Physica.Topical.094a00043.
- Lewis, F.A. Solubility of hydrogen in metals / F.A. Lewis // Pure and Applied Chemistry. - 1990. - V. 62. - № 11. - P. 2091-2096. doi: 10.1351/pac199062112091.
- Paglieri, S.N. Innovations in palladium membrane research / S.N. Paglieri, J.D. Way // Separation and Purification Methods. - 2002. - V. 31. - I. 1. - P. 1-169. doi: 10.1081/SPM-120006115.
- Al-Mufachi, N.A. Hydrogen selective membranes: a review of palladium-based dense metal membranes / Al- N.A. Mufachi, N.V. Rees, R. Steinberger-Wilkens // Renewable and Sustainable Energy Reviews. - 2015. - V. 47. - P. 540-551. doi: 10.1016/j.rser.2015.03.026.
- Rahimpour, M.R. Palladium membranes applications in reaction systems for hydrogen separation and purification: A review / M.R. Rahimpour, F. Samimi, A. Babapoor, T. Tohidian, S. Mohebi // Chemical Engineering and Processing: Process Intensification. - 2017. - V. 121. - P. 24-49. doi: 10.1016/j.cep.2017.07.021.
- Bosko, M.L. New PdNiAu ternary alloys as potential material for hydrogen separation processes / M.L. Bosko, A.D. Fontana, L. Cornaglia, A.M. Tarditi // International Journal of Hydrogen Energy. - 2022. - V. 47. - I. 22. - P. 11589-11600. doi: 10.1016/j.ijhydene.2022.01.179.
- Бурханов, Г.С. Сплавы палладия для водородной энергетики / Г.С. Бурханов, Н.Б. Горина, Н.Б. Кольчугина, Н.Р. Рошан // Российский химический журнал. - 2006. - Т. 50. - № 4. - С. 36-41.
- Ma, Y.H. Characterization of intermetallic diffusion barrier and alloy formation for Pd/Cu and Pd/Ag porous stainless steel composite membranes / Y.H. Ma, B.C. Akis, M.E. Ayturk et al. // Industrial & Engineering Chemistry Research. - 2004. - V. 43. - I. 12. - P. 2936-2945. doi: 10.1021/ie034002e.
- Yun, S. Correlations in palladium membranes for hydrogen separation: A review / S. Yun, S.T. Oyama // Journal of Membrane Science. - 2011. - V. 375. - I. 1-2. - P. 28-45. doi: 10.1016/j.memsci.2011.03.057.
- Peters, T.A. Hydrogen transport through a selection of thin Pd-alloy membranes: Membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures / T.A. Peters, T. Kaleta, M. Stange, R. Bredesen // Catalysis Today. - 2012. - V. 193. - I. 1. - P. 8-19. doi: 10.1016/j.cattod.2011.12.028.
- Gade, S.K. Palladium-gold membranes in mixed gas streams with hydrogen sulfide: Effect of alloy content and fabrication technique / S.K. Gade, S.J. DeVoss, K.E. Coulter et al. // Journal of Membrane Science. - 2011. - V. 378. - I. 1-2. - P. 35-41. doi: 10.1016/j.memsci.2010.11.044.
- Acha, E. Thin PdCu membrane for hydrogen purification from in-situ produced methane reforming complex mixtures containing H2S / E. Acha, Y.C. van Delft, J.F. Cambra, P.L. Arias // Chemical Engineering Science. - 2018. - V. 176. - P. 429-438. doi: 10.1016/j.ces.2017.11.019.
- Fontana, A.D. Hydrogen permeation and surface properties of PdAu and PdAgAu membranes in the presence of CO, CO2 and H2S / A.D. Fontana, N. Sirini, L.M. Cornaglia, A.M. Tarditi // Journal of Membrane Science. - 2018. - V. 563. - P. 351-359. doi: 10.1016/j.memsci.2018.06.001.
- Howard, B.H. Hydrogen permeance of palladium-copper alloy membranes over a wide range of temperatures and pressures / B.H. Howard, R.P. Killmeyer, K.S. Rothenberger et al. // Journal of Membrane Science. - 2004. - V. 241. - I. 2. - P. 207-218. doi: 10.1016/j.memsci.2004.04.031.
- Lee, S.M. Palladium/ruthenium composite membrane for hydrogen separation from the off-gas of solar cell production via chemical vapor deposition / S.M. Lee, N. Xu, S.S. Kim et al. // Journal of Membrane Science. - 2017. - V. 541. - P. 1-8. doi: 10.1016/j.memsci.2017.06.093.
- Liu, J. Hydrogen permeation and stability in ultra-thin PdRu supported membranes /j. Liu, S. Bellini, N.C.A. Nooijer et al. // International Journal of Hydrogen Energy. - 2020. - V. 45. - I. 12. - P. 7455-7467. doi: 10.1016/j.ijhydene.2019.03.212.
- Omidifar, M. H2 permeance and surface characterization of a thin (2 μm) Pd-Ni composite membrane prepared by electroless plating / M. Omidifar, A.A. Babaluo, S. Jamshidi // Chemical Engineering Science. - 2024. - V. 283. - Art. № 119370. - 14 p. doi: 10.1016/j.ces.2023.119370.
- Bosko, M.L. Advances in hydrogen selective membranes based on palladium ternary alloys / M.L. Bosko, A.D. Fontana, A. Tarditi, L. Cornaglia // International Journal of Hydrogen Energy. - 2021. - V. - 46. - I. 29. - P. 15572-15594. doi: 10.1016/j.ijhydene.2021.02.082.
- Kim, D.-W. Study on the perm-selectivity of thin Pd-Cu-Ni ternary alloy membrane for hydrogen purification and separation / D.-W. Kim, Y.J. Park, B.-I. Woo, S.-M. Kang, J.-S. Park // Japanese Journal of Applied Physics. - 2010. - V. 49. - № 1R. - P. 018003-1-018003-3. doi: 10.1143/JJAP.49.018003.
- Nayebossadri, S. A novel Pd-Cu-Zr hydrogen separation membrane with a high tolerance to sulphur poisoning / S. Nayebossadri, J.D. Speight, D. Book // Chemical Communications. - 2015. - V. 51. - I. 87. - P. 15842-15845. doi: 10.1039/C5CC04327A.
- Conde, J.J. Pd-Based Membranes for Hydrogen Separation: Review of Alloying Elements and Their Influence on Membrane Properties /j.J. Conde, M. Maroño, J.M. Sánchez-Hervás // Separation & Purification Reviews. - 2017. - V. 46. - I. 2. - P. 152-177. doi: 10.1080/15422119.2016.1212379.
- Nooijer, N. Influence of H2S on the hydrogen flux of thin-film PdAgAu membranes / N. Nooijer, J.D. Sanchez, J. Melendez et al. // International Journal of Hydrogen Energy. - 2020. - V. 45. - I. 12. - P. 7303-7312. doi: 10.1016/j.ijhydene.2019.06.194.
- Nayebossadri, S. Effects of low Ag additions on the hydrogen permeability of Pd-Cu-Ag hydrogen separation membranes / S. Nayebossadri, J. Speight, D. Book // Journal of Membrane Science. - 2014. - V. 451. - P. 216-225. doi: 10.1016/j.memsci.2013.10.002.
- Escalante, Y. Thermally stable membranes based on PdNiAu systems with high nickel content for hydrogen separation / Y. Escalante, A.M. Tarditi // Journal of Membrane Science. - 2023. - V. 676. - Art. № 121581. - 11 p. doi: 10.1016/j.memsci.2023.121581.
- Chen, Z. High hydrogen permeability of Pd-Ru-In membranes prepared by electroless co-deposition / Z. Chen, Z. Yang, Y. Tong, Z.Yin, S. Li // Separation and Purification Technology. - 2024. - V. 343. - Art. № 127073. - 10 p. doi: 10.1016/j.seppur.2024.127073.
- Doyle, M.L. Palladium-rare earth alloys. Their order-disorder transformations and behaviour with hydrogen / M.L. Doyle, I.R. Harris // Platinum Metals Review. - 1988. - V. 32. - I. 3. - P. 130-140. doi: 10.1595/003214088X323130140.
- Hughes, D.T. Hydrogen diffusion membranes based on some palladium-rare earth solid solution Alloys / D.T. Hughes, I.R. Harris // Zeitschrift für Physikalische Chemie Neue Folge. - 1979. - V. 117. - I. 117. - P. 185-193. doi: 10.1524/zpch.1979.117.117.185.
- Sakamoto, Y. Permeability and diffusivity of hydrogen in palladium-rich Pd-Y(Gd)-Ag ternary alloys / Y. Sakamoto, F.L. Chen, M. Furnkawa, M. Noguchi // Journal of Alloys and Compounds. - 1992. - V. 185. - I. 2. - P. 191-205. doi: 10.1016/0925-8388(92)90468-O.
- Kang, S.G. Identifying Metal Alloys with High Hydrogen Permeability Using High Throughput Theory and Experimental Testing / S.G. Kang, K.E. Coulter, S.K. Gade, J.D. Way, D.S. Sholl // The Journal of Physical Chemistry Letters. - 2011. - V. 2. - I. 24. - P. 3040-3044. doi: 10.1021/jz201393t.
- Burkhanov, G.S. Palladium-based alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures / G.S. Burkhanov, N.B. Gorina, N.B. Kolchugina et al. // Platinum Metals Review. - 2011. - V. 55. - I. 1. - P. 3-12. doi: 10.1595/147106711X540346.
- Al-Shammary, A.F.Y. Palladium-based diffusion membranes as catalysts in ethylene hydrogenation / Al- A.F.Y. Shammary, I.T. Caga, J.M. Winterbottom, A.Y. Tata, I.R. Harris // Journal of Chemical Technology & Biotechnology. - 1991. - V. 52. - I. 4. - P. 571-585. doi: 10.1002/jctb.280520414.
- Kol'chugina, N.B. Membrane Pd-7.70 Wt % Lu alloy for the preparation and purification of hydrogen / N.B. Kol'chugina, S.V. Gorbunov, N.R. Roshan et al. // Physics of Metals and Metallography. - 2021. - V. 122. - I. 1. - P. 54-59. doi: 10.1134/S0031918X21010075.
- Roses, L. Techno-economic assessment of membrane reactor technologies for pure hydrogen production for fuel cell vehicle fleets / L. Roses, G. Manzolini, S. Campanari, E.D. Wit, M. Walter // Energy & Fuels. - 2013. - V. 27. - I. 8. - P. 4423-4431. doi: 10.1021/ef301960e.
- Shi, F. Microscopic structure, hydrogen permeability and hydrogen embrittlement resistance of Nb-Hf-Ni eutectic alloy / F. Shi, X. Wang // International Journal of Hydrogen Energy. - 2021. - V. 46. - I. 1. - P. 1330-1333. doi: 10.1016/j.ijhydene.2020.05.007.
- Phair, J.W. Developments and design of novel (non-palladium-based) metal membranes for hydrogen separation /j.W. Phair, R. Donelson // Industrial & Engineering Chemistry Research. - 2006. - V. 45. - I. 16. - P. 5657-5674. doi: 10.1021/ie051333d.
- Dolan, M.D. Non-Pd BCC alloy membranes for industrial hydrogen separation / M.D. Dolan // Journal of Membrane Science. - 2010. - V. 362. - I. 1-2. - P. 12-28. doi: 10.1016/j.memsci.2010.06.068.
- Rothenberger, K.S. Evaluation of tantalum-based materials for hydrogen separation at elevated temperatures and pressures / K.S. Rothenberger, B.H. Howard, R.P. Killmeyer et al. // Journal of Membrane Science. - 2003. - V. 218. - I. 1-2. - P. 19-37. doi: 10.1016/S0376-7388(03)00134-0.
- Белякова, Р.М. Мембраны на основе Nb-Ni и V-Ni для получения сверхчистого водорода / Р.М. Белякова, Э.Д. Курбанова, Н.И. Сидоров, В.А. Полухин // Расплавы. - 2022. - № 2. - C. 124-140. doi: 10.31857/S0235010622020025.
- Ishikawa, K. Hydrogen permeation in anisotropic Nb-TiNi two-phase alloys formed by forging and rolling / K. Ishikawa, S. Tokui, K. Aoki // International Journal of Hydrogen Energy. - 2017. - V. 42. - I. 16. - P. 11411-11421. doi: 10.1016/j.ijhydene.2017.03.127.
- Yan, E. Design and characterizations of novel Nb-ZrCo hydrogen permeation alloys for hydrogen separation applications / E. Yan, H. Huang, R. Min et al. // Materials Chemistry and Physics. - 2018. - V. - 212. - P. 282-291. doi: 10.1016/j.matchemphys.2018.03.059.
- Huang, F. Hydrogen transport through the V-Cr-Al alloys: Hydrogen solution, permeation and thermal-stability / F. Huang, X. Li, X. Shan et al. // Separation and Purification Technology. - 2020. - V. 240. - Art. № 116654. - 9 p. doi: 10.1016/j.seppur.2020.116654.
- Zhang, Y. Hydrogen permeation characteristics of vanadium-aluminium alloys / Y. Zhang, T. Ozaki, M. Komaki, C. Nishimura // Scripta Materialia. - 2002. - V. 47. - I. 9. - P. 601-606. doi: 10.1016/S1359-6462(02)00218-X.
- Santucci, A. 4 - Alternatives to palladium in membranes for hydrogen separation: nickel, niobium and vanadium alloys, ceramic supports for metal alloys and porous glass membranes / A. Santucci, S. Tosti, A. Basile // Handbook of Membrane Reactors Fundamental Materials Science, Design and Optimisation; ed. by A. Basile. In: Woodhead Publishing Series in Energy. - V. 1. - Oxford: Woodhead Publishing, 2013. - P. 183-217. doi: 10.1533/9780857097330.1.183.
- Yan, X.F. Effects of doping with a third element (Pd, Ru, Ta) on the structure and hydrogen permeation properties of V-10Mo solid solutions / X.F. Yan, Z. Wang, F. Wang et al. // International Journal of Hydrogen Energy. - 2020. - V. 45. - I. 7. - P. 4635-4643. doi: 10.1016/j.ijhydene.2019.12.026.
- Alimov, V.N. Bcc V-Fe alloys for the hydrogen separation membranes: Hydrogen solubility and global character of alloying effect / V.N. Alimov, A.O. Busnyuk, S.R. Kuzenov, E.U. Peredistov, A.I. Livshits // Journal of Membrane Science. - 2022. - V. 644. - Art. №. 120159. - 8 p. doi: 10.1016/j.memsci.2021.120159.
- Handbook of ternary alloy phase diagrams (10 volume set); ed. by P. Villars, Prince, H. Okamoto. - Materials Park, Ohio: ASM International, 1995. - 15000 p.
- Binary alloy phase diagrams (3 volume set); ed. by T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak. - Materials Park, Ohio: ASM International, 1990. - XXII+3589 pp.
- Komiya, K. Alloying effects on the hydriding properties of niobium metal / K. Komiya, S. Ito, H. Yukawa et al. // Materials Transactions. - 2003. - V. 44. - I. 9. - P. 1686-1689. doi: 10.2320/matertrans.44.1686.
- Yukawa, H. Alloying effects on the phase stability of hydrides formed in vanadium alloys / H. Yukawa, D. Yamashita, S. Ito et al. // Materials Transactions. - 2002. - V. 43. - I. 11. - P. 2757-2762. doi: 10.2320/matertrans.43.2757.
- Santos, D.S. The use of electrochemical hydrogen permeation techniques to detect hydride phase separation in amorphous metallic alloys / D.S. Santos, P.E.V. Miranda // Journal of Non-Crystalline Solids. - 1998. - V. 232-234. - P. 133-139. doi: 10.1016/S0022-3093(98)00487-6.
- Suzuki, A. Alloying effects on hydrogen solubility and hydrogen permeability for V-based alloy membranes / A. Suzuki, H. Yukawa, S. Ijiri et al. // Materials Transactions. - 2015. - V. 56. - I. 10. - P. 1688-1692. doi: 10.2320/matertrans.MAW201511.
- Matsumoto, Y. Determination of ductile-to-brittle transition hydrogen concentrations (DBTC) for group 5 hydrogen permeable membranes using in-situ small punch test / Y. Matsumoto, H. Yukawa, T. Nambu // Journal of the Japan Institute of Metals and Materials. - 2013. - V. 77. - I. 12. - P. 585-592. doi: 10.2320/jinstmet.JC201313.
- Suzuki, A. Quantitative evaluations of hydrogen diffusivity in V-X (X = Cr, Al, Pd) alloy membranes based on hydrogen chemical potential / A. Suzuki, H. Yukawa // Membranes. - 2021. - V. 11. - I. 1. - Art. № 67. - 20 p. doi: 10.3390/membranes11010067.
- Suzuki, A. A review for consistent analysis of hydrogen permeability through dense metallic membranes / A. Suzuki, H. Yukawa // Membranes. - 2020. - V. 10. - I. 6. - Art. № 120. - 20 p. doi: 10.3390/membranes10060120.
- Suzuki, A. Analysis of hydrogen mobility in Nb-based alloy membranes in view of new description of hydrogen permeability based on hydrogen chemical potential / A. Suzuki, H. Yukawa, T. Nambu et al. // Journal of Alloys and Compounds. - 2015. - V. 645. - Suppl. 1. - P. S107-S111. doi: 10.1016/j.jallcom.2014.12.265.
- Kashkarov, E.B. Effect of high and low Nb content in multicomponent Nb-Ni-Ti-Zr-Co alloy on its structure, hardness and hydrogen permeability / E.B. Kashkarov, L.A. Svyatkin, K.S. Gusev et al. // Intermetallics. - 2024. - V. 166. - Art. № 108180. - 9 p. doi: 10.1016/j.intermet.2023.108180.
- Cheng, C.-Y. Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys / C.-Y. Cheng, Y.-C. Yang, Y.-Z. Zhong et al. // Current Opinion in Solid State and Materials Science. - 2017. - V. 21. - I. 6. - P. 299-311. doi: 10.1016/j.cossms.2017.09.002.
- Kashkarov, E. Microstructure and hydrogen permeability of Nb-Ni-Ti-Zr-Co high entropy alloys / E. Kashkarov, D. Krotkevich, M. Koptsev et al. // Membranes. - 2022. - V. 12. - I. 11. - Art. № 1157. - 9 p. doi: 10.3390/membranes12111157.
- Tang, H.X. Effect of elements addition on hydrogen permeability and ductility of Nb40Ti18Zr12Ni30 alloy / H.X. Tang, K. Ishikawa, K. Aoki // Journal of Alloys and Compounds. - 2008. - V. 461. - I. 1-2. - P. 263-266. doi: 10.1016/j.jallcom.2007.06.116.
- Yan, E. Microstructure, hydrogen permeability and ductile-to-brittle transition-hydrogen concentration of (V, Nb)-Ti-Co quaternary alloys / E. Yan, X. Ge, Z. Guo et al. // Materials Chemistry and Physics. - 2023. - V. 305. - Art. № 127919. - 12 p. doi: 10.1016/j.matchemphys.2023.127919.
- Yamaura, S. Effect of surface coating element on hydrogen permeability of melt-spun Ni40Nb20Ta5Zr30Co5 amorphous alloy / S. Yamaura, A. Inoue // Journal of Membrane Science. - 2010. - V. 349. - I. 1-2. - P. 138-144. doi: 10.1016/j.memsci.2009.11.037.
- Dolan, M.D. Thermal stability, glass-forming ability and hydrogen permeability of amorphous Ni64Zr36-XMX (M=Ti, Nb, Mo, Hf, Ta or W) membranes / M.D. Dolan, S. Hara, N.C. Dave et al. // Separation and Purification Technology. - 2009. - V. 65. - I. 3. - P. 298-304. doi: 10.1016/j.seppur.2008.10.051.
- Paglieri, S.N. Hydrogen permeability, thermal stability and hydrogen embrittlement of Ni-Nb-Zr and Ni-Nb-Ta-Zr amorphous alloy membranes / S.N. Paglieri, N.K. Pal, M.D. Dolan et al. // Journal of Membrane Science. - 2011. - V. 378. - I. 1-2. - P. 42-50. doi: 10.1016/j.memsci.2011.04.049.
- Sidorov N.I. Hydrogen kinetics in membrane alloys based on Fe-Ni, Nb-Ni, and V-Ni / N.I. Sidorov, S.K. Estemirova, E.D. Kurbanova, V.A. Polukhin // Russian Metallurgy (Metally). - 2022. - V. 2022. - I. 8. - P. 887-897. doi: 10.1134/S0036029522080158.
- Nayebossadri, S. Thermal and structural stability of Zr-based amorphous thin films for potential application in hydrogen purification / S. Nayebossadri, C.J. Greenwood, J.D. Speight, D. Book // Separation and Purification Technology. - 2017. - V. 187. - P. 173-183. doi: 10.1016/j.seppur.2017.06.052.
- Shimpo, Y. Development of melt-spun Ni-Nb-Zr-Co amorphous alloy for high-performance hydrogen separating membrane / Y. Shimpo, S.-I. Yamaura, M. Nishida et al. // Journal of Membrane Science. - 2006. - V. 286. - I. 1-2. - P. 170-173. doi: 10.1016/j.memsci.2006.09.031.
- Yamaura, S.-I. Hydrogen permeation of the Zr65Al7.5Ni10Cu12.5Pd5 alloy in three different microstructures / S.-I. Yamaura, S. Nakata, H. Kimura, A. Inoue // Journal of Membrane Science. - 2007. - V. 291. - I. 1-2. - P. 126-130. doi: 10.1016/j.memsci.2006.12.049.
- Paolone, A. 9 - Amorphous metal membranes / A. Paolone, D. Chandra // Current Trends and Future Developments on (Bio-) Membranes, Recent Advances in Metallic Membranes; ed. by A. Basile, F. Gallucci. - Amsterdam, Elsevier, 2020. - P. 209-233. doi: 10.1016/B978-0-12-818332-8.00009-0.
- Смирнов, Л.И. Диффузия и диффузионные явления в водородной подсистеме сплавов металл-водород / Л.И. Смирнов, В.А. Гольцов // Международный научный журнал "Альтернативная энергетика и экология". - 2014. - № 1 (141). - C. 111-137.
- Прижимов, А.С. Молекулярно-динамическое моделирование диффузии водорода в бикристалле палладия, содержащем малоугловую границу зерен / А.С. Прижимов, А.В. Болдырева // Конденсированные среды и межфазные границы. - 2016. - Т. 18. - № 3. - С. 402-407.
- McLennan, K.G. Deuterium occupation of tetrahedral sites in palladium / K.G. McLennan, E.M. Gray, J.F. Dobson // Physical Review B. - 2008. - V. 78. - P. 014104-1-014104-9. doi: 10.1103/PhysRevB.78.014104.
- Gissler, W. Theory of the quasielastic neutron scattering by hydrogen in bcc metals applying a random flight method / W. Gissler, H. Rother // Physica. - 1970. - V. 50. - I. 3. - P. 380-390. doi: 10.1016/0031-8914(70)90258-2.
- Kirchheim, R. Hydrogen in amorphous and nanocrystalline / R. Kirchheim, T. Mütschele, W. Kieninger et al. // Materials Science and Engineering. - 1988. - V. - 99. - I. 1-2. - P. 457-462. doi: 10.1016/0025-5416(88)90377-1.
- Лариков, Л.Н. Диффузия в аморфных металлических сплавах I / Л.Н. Лариков // Металлофизика. - 1993. - Т. 15. - № 4. - С. 54-78.
- Andrievski, R.A. Size effects in properties of nanomaterials / R.A. Andrievski, A.M. Glezer // Scripta materialia. - 2001. - V. 44. - I. 8-9. - P. 1621-1624. doi: 10.1016/S1359-6462(01)00786-2.
- Gapontsev, A.V. Hydrogen diffusion in disordered metals and alloys / A.V. Gapontsev, V.V. Kondrat'ev // Physics-Uspekhi. - 2003. - V. 46. - № 10. - P. 1077-1098. doi: 10.1070/pu2003v046n10abeh001660.
- Polukhin, V.A.Comparative analysis of the characteristics of amorphous, nanocrystalline, and crystalline membrane alloys / V.A. Polukhin, N.I. Sidorov, E.D. Kurbanova, R.M. Belyakova // Russian Metallurgy (Metally). - 2022. - V. 2022. - I. 8. - P. 797-817. doi: 10.1134/S0036029522080110.
Arquivos suplementares

