Metal membranes for hydrogen purification: problems, trends and prospects of application

封面

如何引用文章

全文:

详细

The problems associated with the global warming due to greenhouse gas emissions from human activities are driving the search for new technologies to reduce CO 2 emissions from the fossil fuel combustion. Hydrogen is a clean and efficient energy carrier, so the hydrogen energy is considered as one of the strategic directions for the development of the energy security and sustainability. Although hydrogen can be produced by electrolysis of water, most of the hydrogen produced worldwide currently comes from steam reforming of natural gas, which must be purified to ultra-high purity for economic reasons. Traditional methods based on pressure swing absorption-desorption using cryogenic distillation are energy intensive, which motivates the development of new highly selective and energy efficient H 2 purification technologies. Such technologies include rapidly developing membrane technology, which at the moment has not yet reached the level required for its widespread industrial application. In this review article, we analyze the main aspects of current research in the field of hydrogen purification technology using dense metal membranes, with an emphasis on their technological stability due to the selection of their chemical composition (including multicomponent) and optimization of the structural state. We also considered the prospects for further development and use of this technology for economic needs.

作者简介

Valery Polukhin

Institute of Metallurgy of the Ural Branch of the RAS

Email: p.valery47@yandex.ru
Dr. Sc., Chief Researcher.

Svetlana Estemirova

Institute of Metallurgy of the Ural Branch of the RAS

Email: esveta100@mail.ru
Ph. D. Senior Researcher.

参考

  1. Bernardo, G. Recent advances in membrane technologies for hydrogen purification / G. Bernardo, T. Araújo, T.S. Lopes, J. Sousa, A. Mendes // International Journal of Hydrogen Energy. - 2020. - V. 45. - I. 12. - P. 7313-7338. doi: 10.1016/j.ijhydene.2019.06.162.
  2. Palladium membrane technology for hydrogen production, carbon capture and other applications: principles, energy production and other applications; ed. by A. Doukelis, K. Panopoulos, A. Koumanakos, E. Kakaras // Woodhead Publishing Series in Energy. - V. 68. - Amsterdam: Woodhead Publishing, 2014. - 402 p. doi: 10.1016/C2013-0-16496-3.
  3. Ockwig, N.W. Membranes for hydrogen Separation / N.W. Ockwig, T.M. Nenoff // Chemical Reviews. - 2007. - V. 107. - I. 10. - P. 4078-4110. doi: 10.1021/cr0501792.
  4. Yukawa H. 13 - Design of group 5 metal-based alloy membranes with high hydrogen permeability and strong resistance to hydrogen embrittlement / H. Yukawa, T. Nambu, Y. Matsumoto // Advances in Hydrogen Production, Storage and Distribution; ed. by A. Basile, A. Iulianelli. In: Woodhead Publishing Series in Energy. - V. 63. - Amsterdam: Woodhead Publishing, 2014. - P. 341-367. doi: 10.1533/9780857097736.3.341.
  5. Stenina, I. Modern technologies of hydrogen production / I. Stenina, A. Yaroslavtsev // Processes. - 2023. - V. 11. - I. 1. - Art. № 56. - 34 p. doi: 10.3390/pr11010056.
  6. Cerone, N. Recent advancements in Pd-based membranes for hydrogen separation / N. Cerone, G.D. Zito, C. Florio, L. Fabbiano, F. Zimbardi // Energies. - 2024. - V. 17. - I. 16. - Art. № 4095. - 15 p. doi: 10.3390/en17164095.
  7. Li, P. Recent developments in membranes for efficient hydrogen purification / P. Li, Z. Wang, Z. Qiao et al. // Journal of Membrane Science. - 2015. - V. 495. - P. 130-168. doi: 10.1016/j.memsci.2015.08.010.
  8. Buxbaum, R.E. Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium / R.E. Buxbaum, A.B. Kinney // Industrial & Engineering Chemistry Research. - 1996. - V. 35. - I. 2. - P. 530-537. doi: 10.1021/ie950105o.
  9. Wipf, H. Solubility and diffusion of hydrogen in pure metals and alloys / H. Wipf // Physica Scripta. - 2001. - V. 2001. - № T94. - P. 43-51. doi: 10.1238/Physica.Topical.094a00043.
  10. Lewis, F.A. Solubility of hydrogen in metals / F.A. Lewis // Pure and Applied Chemistry. - 1990. - V. 62. - № 11. - P. 2091-2096. doi: 10.1351/pac199062112091.
  11. Paglieri, S.N. Innovations in palladium membrane research / S.N. Paglieri, J.D. Way // Separation and Purification Methods. - 2002. - V. 31. - I. 1. - P. 1-169. doi: 10.1081/SPM-120006115.
  12. Al-Mufachi, N.A. Hydrogen selective membranes: a review of palladium-based dense metal membranes / Al- N.A. Mufachi, N.V. Rees, R. Steinberger-Wilkens // Renewable and Sustainable Energy Reviews. - 2015. - V. 47. - P. 540-551. doi: 10.1016/j.rser.2015.03.026.
  13. Rahimpour, M.R. Palladium membranes applications in reaction systems for hydrogen separation and purification: A review / M.R. Rahimpour, F. Samimi, A. Babapoor, T. Tohidian, S. Mohebi // Chemical Engineering and Processing: Process Intensification. - 2017. - V. 121. - P. 24-49. doi: 10.1016/j.cep.2017.07.021.
  14. Bosko, M.L. New PdNiAu ternary alloys as potential material for hydrogen separation processes / M.L. Bosko, A.D. Fontana, L. Cornaglia, A.M. Tarditi // International Journal of Hydrogen Energy. - 2022. - V. 47. - I. 22. - P. 11589-11600. doi: 10.1016/j.ijhydene.2022.01.179.
  15. Бурханов, Г.С. Сплавы палладия для водородной энергетики / Г.С. Бурханов, Н.Б. Горина, Н.Б. Кольчугина, Н.Р. Рошан // Российский химический журнал. - 2006. - Т. 50. - № 4. - С. 36-41.
  16. Ma, Y.H. Characterization of intermetallic diffusion barrier and alloy formation for Pd/Cu and Pd/Ag porous stainless steel composite membranes / Y.H. Ma, B.C. Akis, M.E. Ayturk et al. // Industrial & Engineering Chemistry Research. - 2004. - V. 43. - I. 12. - P. 2936-2945. doi: 10.1021/ie034002e.
  17. Yun, S. Correlations in palladium membranes for hydrogen separation: A review / S. Yun, S.T. Oyama // Journal of Membrane Science. - 2011. - V. 375. - I. 1-2. - P. 28-45. doi: 10.1016/j.memsci.2011.03.057.
  18. Peters, T.A. Hydrogen transport through a selection of thin Pd-alloy membranes: Membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures / T.A. Peters, T. Kaleta, M. Stange, R. Bredesen // Catalysis Today. - 2012. - V. 193. - I. 1. - P. 8-19. doi: 10.1016/j.cattod.2011.12.028.
  19. Gade, S.K. Palladium-gold membranes in mixed gas streams with hydrogen sulfide: Effect of alloy content and fabrication technique / S.K. Gade, S.J. DeVoss, K.E. Coulter et al. // Journal of Membrane Science. - 2011. - V. 378. - I. 1-2. - P. 35-41. doi: 10.1016/j.memsci.2010.11.044.
  20. Acha, E. Thin PdCu membrane for hydrogen purification from in-situ produced methane reforming complex mixtures containing H2S / E. Acha, Y.C. van Delft, J.F. Cambra, P.L. Arias // Chemical Engineering Science. - 2018. - V. 176. - P. 429-438. doi: 10.1016/j.ces.2017.11.019.
  21. Fontana, A.D. Hydrogen permeation and surface properties of PdAu and PdAgAu membranes in the presence of CO, CO2 and H2S / A.D. Fontana, N. Sirini, L.M. Cornaglia, A.M. Tarditi // Journal of Membrane Science. - 2018. - V. 563. - P. 351-359. doi: 10.1016/j.memsci.2018.06.001.
  22. Howard, B.H. Hydrogen permeance of palladium-copper alloy membranes over a wide range of temperatures and pressures / B.H. Howard, R.P. Killmeyer, K.S. Rothenberger et al. // Journal of Membrane Science. - 2004. - V. 241. - I. 2. - P. 207-218. doi: 10.1016/j.memsci.2004.04.031.
  23. Lee, S.M. Palladium/ruthenium composite membrane for hydrogen separation from the off-gas of solar cell production via chemical vapor deposition / S.M. Lee, N. Xu, S.S. Kim et al. // Journal of Membrane Science. - 2017. - V. 541. - P. 1-8. doi: 10.1016/j.memsci.2017.06.093.
  24. Liu, J. Hydrogen permeation and stability in ultra-thin PdRu supported membranes /j. Liu, S. Bellini, N.C.A. Nooijer et al. // International Journal of Hydrogen Energy. - 2020. - V. 45. - I. 12. - P. 7455-7467. doi: 10.1016/j.ijhydene.2019.03.212.
  25. Omidifar, M. H2 permeance and surface characterization of a thin (2 μm) Pd-Ni composite membrane prepared by electroless plating / M. Omidifar, A.A. Babaluo, S. Jamshidi // Chemical Engineering Science. - 2024. - V. 283. - Art. № 119370. - 14 p. doi: 10.1016/j.ces.2023.119370.
  26. Bosko, M.L. Advances in hydrogen selective membranes based on palladium ternary alloys / M.L. Bosko, A.D. Fontana, A. Tarditi, L. Cornaglia // International Journal of Hydrogen Energy. - 2021. - V. - 46. - I. 29. - P. 15572-15594. doi: 10.1016/j.ijhydene.2021.02.082.
  27. Kim, D.-W. Study on the perm-selectivity of thin Pd-Cu-Ni ternary alloy membrane for hydrogen purification and separation / D.-W. Kim, Y.J. Park, B.-I. Woo, S.-M. Kang, J.-S. Park // Japanese Journal of Applied Physics. - 2010. - V. 49. - № 1R. - P. 018003-1-018003-3. doi: 10.1143/JJAP.49.018003.
  28. Nayebossadri, S. A novel Pd-Cu-Zr hydrogen separation membrane with a high tolerance to sulphur poisoning / S. Nayebossadri, J.D. Speight, D. Book // Chemical Communications. - 2015. - V. 51. - I. 87. - P. 15842-15845. doi: 10.1039/C5CC04327A.
  29. Conde, J.J. Pd-Based Membranes for Hydrogen Separation: Review of Alloying Elements and Their Influence on Membrane Properties /j.J. Conde, M. Maroño, J.M. Sánchez-Hervás // Separation & Purification Reviews. - 2017. - V. 46. - I. 2. - P. 152-177. doi: 10.1080/15422119.2016.1212379.
  30. Nooijer, N. Influence of H2S on the hydrogen flux of thin-film PdAgAu membranes / N. Nooijer, J.D. Sanchez, J. Melendez et al. // International Journal of Hydrogen Energy. - 2020. - V. 45. - I. 12. - P. 7303-7312. doi: 10.1016/j.ijhydene.2019.06.194.
  31. Nayebossadri, S. Effects of low Ag additions on the hydrogen permeability of Pd-Cu-Ag hydrogen separation membranes / S. Nayebossadri, J. Speight, D. Book // Journal of Membrane Science. - 2014. - V. 451. - P. 216-225. doi: 10.1016/j.memsci.2013.10.002.
  32. Escalante, Y. Thermally stable membranes based on PdNiAu systems with high nickel content for hydrogen separation / Y. Escalante, A.M. Tarditi // Journal of Membrane Science. - 2023. - V. 676. - Art. № 121581. - 11 p. doi: 10.1016/j.memsci.2023.121581.
  33. Chen, Z. High hydrogen permeability of Pd-Ru-In membranes prepared by electroless co-deposition / Z. Chen, Z. Yang, Y. Tong, Z.Yin, S. Li // Separation and Purification Technology. - 2024. - V. 343. - Art. № 127073. - 10 p. doi: 10.1016/j.seppur.2024.127073.
  34. Doyle, M.L. Palladium-rare earth alloys. Their order-disorder transformations and behaviour with hydrogen / M.L. Doyle, I.R. Harris // Platinum Metals Review. - 1988. - V. 32. - I. 3. - P. 130-140. doi: 10.1595/003214088X323130140.
  35. Hughes, D.T. Hydrogen diffusion membranes based on some palladium-rare earth solid solution Alloys / D.T. Hughes, I.R. Harris // Zeitschrift für Physikalische Chemie Neue Folge. - 1979. - V. 117. - I. 117. - P. 185-193. doi: 10.1524/zpch.1979.117.117.185.
  36. Sakamoto, Y. Permeability and diffusivity of hydrogen in palladium-rich Pd-Y(Gd)-Ag ternary alloys / Y. Sakamoto, F.L. Chen, M. Furnkawa, M. Noguchi // Journal of Alloys and Compounds. - 1992. - V. 185. - I. 2. - P. 191-205. doi: 10.1016/0925-8388(92)90468-O.
  37. Kang, S.G. Identifying Metal Alloys with High Hydrogen Permeability Using High Throughput Theory and Experimental Testing / S.G. Kang, K.E. Coulter, S.K. Gade, J.D. Way, D.S. Sholl // The Journal of Physical Chemistry Letters. - 2011. - V. 2. - I. 24. - P. 3040-3044. doi: 10.1021/jz201393t.
  38. Burkhanov, G.S. Palladium-based alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures / G.S. Burkhanov, N.B. Gorina, N.B. Kolchugina et al. // Platinum Metals Review. - 2011. - V. 55. - I. 1. - P. 3-12. doi: 10.1595/147106711X540346.
  39. Al-Shammary, A.F.Y. Palladium-based diffusion membranes as catalysts in ethylene hydrogenation / Al- A.F.Y. Shammary, I.T. Caga, J.M. Winterbottom, A.Y. Tata, I.R. Harris // Journal of Chemical Technology & Biotechnology. - 1991. - V. 52. - I. 4. - P. 571-585. doi: 10.1002/jctb.280520414.
  40. Kol'chugina, N.B. Membrane Pd-7.70 Wt % Lu alloy for the preparation and purification of hydrogen / N.B. Kol'chugina, S.V. Gorbunov, N.R. Roshan et al. // Physics of Metals and Metallography. - 2021. - V. 122. - I. 1. - P. 54-59. doi: 10.1134/S0031918X21010075.
  41. Roses, L. Techno-economic assessment of membrane reactor technologies for pure hydrogen production for fuel cell vehicle fleets / L. Roses, G. Manzolini, S. Campanari, E.D. Wit, M. Walter // Energy & Fuels. - 2013. - V. 27. - I. 8. - P. 4423-4431. doi: 10.1021/ef301960e.
  42. Shi, F. Microscopic structure, hydrogen permeability and hydrogen embrittlement resistance of Nb-Hf-Ni eutectic alloy / F. Shi, X. Wang // International Journal of Hydrogen Energy. - 2021. - V. 46. - I. 1. - P. 1330-1333. doi: 10.1016/j.ijhydene.2020.05.007.
  43. Phair, J.W. Developments and design of novel (non-palladium-based) metal membranes for hydrogen separation /j.W. Phair, R. Donelson // Industrial & Engineering Chemistry Research. - 2006. - V. 45. - I. 16. - P. 5657-5674. doi: 10.1021/ie051333d.
  44. Dolan, M.D. Non-Pd BCC alloy membranes for industrial hydrogen separation / M.D. Dolan // Journal of Membrane Science. - 2010. - V. 362. - I. 1-2. - P. 12-28. doi: 10.1016/j.memsci.2010.06.068.
  45. Rothenberger, K.S. Evaluation of tantalum-based materials for hydrogen separation at elevated temperatures and pressures / K.S. Rothenberger, B.H. Howard, R.P. Killmeyer et al. // Journal of Membrane Science. - 2003. - V. 218. - I. 1-2. - P. 19-37. doi: 10.1016/S0376-7388(03)00134-0.
  46. Белякова, Р.М. Мембраны на основе Nb-Ni и V-Ni для получения сверхчистого водорода / Р.М. Белякова, Э.Д. Курбанова, Н.И. Сидоров, В.А. Полухин // Расплавы. - 2022. - № 2. - C. 124-140. doi: 10.31857/S0235010622020025.
  47. Ishikawa, K. Hydrogen permeation in anisotropic Nb-TiNi two-phase alloys formed by forging and rolling / K. Ishikawa, S. Tokui, K. Aoki // International Journal of Hydrogen Energy. - 2017. - V. 42. - I. 16. - P. 11411-11421. doi: 10.1016/j.ijhydene.2017.03.127.
  48. Yan, E. Design and characterizations of novel Nb-ZrCo hydrogen permeation alloys for hydrogen separation applications / E. Yan, H. Huang, R. Min et al. // Materials Chemistry and Physics. - 2018. - V. - 212. - P. 282-291. doi: 10.1016/j.matchemphys.2018.03.059.
  49. Huang, F. Hydrogen transport through the V-Cr-Al alloys: Hydrogen solution, permeation and thermal-stability / F. Huang, X. Li, X. Shan et al. // Separation and Purification Technology. - 2020. - V. 240. - Art. № 116654. - 9 p. doi: 10.1016/j.seppur.2020.116654.
  50. Zhang, Y. Hydrogen permeation characteristics of vanadium-aluminium alloys / Y. Zhang, T. Ozaki, M. Komaki, C. Nishimura // Scripta Materialia. - 2002. - V. 47. - I. 9. - P. 601-606. doi: 10.1016/S1359-6462(02)00218-X.
  51. Santucci, A. 4 - Alternatives to palladium in membranes for hydrogen separation: nickel, niobium and vanadium alloys, ceramic supports for metal alloys and porous glass membranes / A. Santucci, S. Tosti, A. Basile // Handbook of Membrane Reactors Fundamental Materials Science, Design and Optimisation; ed. by A. Basile. In: Woodhead Publishing Series in Energy. - V. 1. - Oxford: Woodhead Publishing, 2013. - P. 183-217. doi: 10.1533/9780857097330.1.183.
  52. Yan, X.F. Effects of doping with a third element (Pd, Ru, Ta) on the structure and hydrogen permeation properties of V-10Mo solid solutions / X.F. Yan, Z. Wang, F. Wang et al. // International Journal of Hydrogen Energy. - 2020. - V. 45. - I. 7. - P. 4635-4643. doi: 10.1016/j.ijhydene.2019.12.026.
  53. Alimov, V.N. Bcc V-Fe alloys for the hydrogen separation membranes: Hydrogen solubility and global character of alloying effect / V.N. Alimov, A.O. Busnyuk, S.R. Kuzenov, E.U. Peredistov, A.I. Livshits // Journal of Membrane Science. - 2022. - V. 644. - Art. №. 120159. - 8 p. doi: 10.1016/j.memsci.2021.120159.
  54. Handbook of ternary alloy phase diagrams (10 volume set); ed. by P. Villars, Prince, H. Okamoto. - Materials Park, Ohio: ASM International, 1995. - 15000 p.
  55. Binary alloy phase diagrams (3 volume set); ed. by T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak. - Materials Park, Ohio: ASM International, 1990. - XXII+3589 pp.
  56. Komiya, K. Alloying effects on the hydriding properties of niobium metal / K. Komiya, S. Ito, H. Yukawa et al. // Materials Transactions. - 2003. - V. 44. - I. 9. - P. 1686-1689. doi: 10.2320/matertrans.44.1686.
  57. Yukawa, H. Alloying effects on the phase stability of hydrides formed in vanadium alloys / H. Yukawa, D. Yamashita, S. Ito et al. // Materials Transactions. - 2002. - V. 43. - I. 11. - P. 2757-2762. doi: 10.2320/matertrans.43.2757.
  58. Santos, D.S. The use of electrochemical hydrogen permeation techniques to detect hydride phase separation in amorphous metallic alloys / D.S. Santos, P.E.V. Miranda // Journal of Non-Crystalline Solids. - 1998. - V. 232-234. - P. 133-139. doi: 10.1016/S0022-3093(98)00487-6.
  59. Suzuki, A. Alloying effects on hydrogen solubility and hydrogen permeability for V-based alloy membranes / A. Suzuki, H. Yukawa, S. Ijiri et al. // Materials Transactions. - 2015. - V. 56. - I. 10. - P. 1688-1692. doi: 10.2320/matertrans.MAW201511.
  60. Matsumoto, Y. Determination of ductile-to-brittle transition hydrogen concentrations (DBTC) for group 5 hydrogen permeable membranes using in-situ small punch test / Y. Matsumoto, H. Yukawa, T. Nambu // Journal of the Japan Institute of Metals and Materials. - 2013. - V. 77. - I. 12. - P. 585-592. doi: 10.2320/jinstmet.JC201313.
  61. Suzuki, A. Quantitative evaluations of hydrogen diffusivity in V-X (X = Cr, Al, Pd) alloy membranes based on hydrogen chemical potential / A. Suzuki, H. Yukawa // Membranes. - 2021. - V. 11. - I. 1. - Art. № 67. - 20 p. doi: 10.3390/membranes11010067.
  62. Suzuki, A. A review for consistent analysis of hydrogen permeability through dense metallic membranes / A. Suzuki, H. Yukawa // Membranes. - 2020. - V. 10. - I. 6. - Art. № 120. - 20 p. doi: 10.3390/membranes10060120.
  63. Suzuki, A. Analysis of hydrogen mobility in Nb-based alloy membranes in view of new description of hydrogen permeability based on hydrogen chemical potential / A. Suzuki, H. Yukawa, T. Nambu et al. // Journal of Alloys and Compounds. - 2015. - V. 645. - Suppl. 1. - P. S107-S111. doi: 10.1016/j.jallcom.2014.12.265.
  64. Kashkarov, E.B. Effect of high and low Nb content in multicomponent Nb-Ni-Ti-Zr-Co alloy on its structure, hardness and hydrogen permeability / E.B. Kashkarov, L.A. Svyatkin, K.S. Gusev et al. // Intermetallics. - 2024. - V. 166. - Art. № 108180. - 9 p. doi: 10.1016/j.intermet.2023.108180.
  65. Cheng, C.-Y. Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys / C.-Y. Cheng, Y.-C. Yang, Y.-Z. Zhong et al. // Current Opinion in Solid State and Materials Science. - 2017. - V. 21. - I. 6. - P. 299-311. doi: 10.1016/j.cossms.2017.09.002.
  66. Kashkarov, E. Microstructure and hydrogen permeability of Nb-Ni-Ti-Zr-Co high entropy alloys / E. Kashkarov, D. Krotkevich, M. Koptsev et al. // Membranes. - 2022. - V. 12. - I. 11. - Art. № 1157. - 9 p. doi: 10.3390/membranes12111157.
  67. Tang, H.X. Effect of elements addition on hydrogen permeability and ductility of Nb40Ti18Zr12Ni30 alloy / H.X. Tang, K. Ishikawa, K. Aoki // Journal of Alloys and Compounds. - 2008. - V. 461. - I. 1-2. - P. 263-266. doi: 10.1016/j.jallcom.2007.06.116.
  68. Yan, E. Microstructure, hydrogen permeability and ductile-to-brittle transition-hydrogen concentration of (V, Nb)-Ti-Co quaternary alloys / E. Yan, X. Ge, Z. Guo et al. // Materials Chemistry and Physics. - 2023. - V. 305. - Art. № 127919. - 12 p. doi: 10.1016/j.matchemphys.2023.127919.
  69. Yamaura, S. Effect of surface coating element on hydrogen permeability of melt-spun Ni40Nb20Ta5Zr30Co5 amorphous alloy / S. Yamaura, A. Inoue // Journal of Membrane Science. - 2010. - V. 349. - I. 1-2. - P. 138-144. doi: 10.1016/j.memsci.2009.11.037.
  70. Dolan, M.D. Thermal stability, glass-forming ability and hydrogen permeability of amorphous Ni64Zr36-XMX (M=Ti, Nb, Mo, Hf, Ta or W) membranes / M.D. Dolan, S. Hara, N.C. Dave et al. // Separation and Purification Technology. - 2009. - V. 65. - I. 3. - P. 298-304. doi: 10.1016/j.seppur.2008.10.051.
  71. Paglieri, S.N. Hydrogen permeability, thermal stability and hydrogen embrittlement of Ni-Nb-Zr and Ni-Nb-Ta-Zr amorphous alloy membranes / S.N. Paglieri, N.K. Pal, M.D. Dolan et al. // Journal of Membrane Science. - 2011. - V. 378. - I. 1-2. - P. 42-50. doi: 10.1016/j.memsci.2011.04.049.
  72. Sidorov N.I. Hydrogen kinetics in membrane alloys based on Fe-Ni, Nb-Ni, and V-Ni / N.I. Sidorov, S.K. Estemirova, E.D. Kurbanova, V.A. Polukhin // Russian Metallurgy (Metally). - 2022. - V. 2022. - I. 8. - P. 887-897. doi: 10.1134/S0036029522080158.
  73. Nayebossadri, S. Thermal and structural stability of Zr-based amorphous thin films for potential application in hydrogen purification / S. Nayebossadri, C.J. Greenwood, J.D. Speight, D. Book // Separation and Purification Technology. - 2017. - V. 187. - P. 173-183. doi: 10.1016/j.seppur.2017.06.052.
  74. Shimpo, Y. Development of melt-spun Ni-Nb-Zr-Co amorphous alloy for high-performance hydrogen separating membrane / Y. Shimpo, S.-I. Yamaura, M. Nishida et al. // Journal of Membrane Science. - 2006. - V. 286. - I. 1-2. - P. 170-173. doi: 10.1016/j.memsci.2006.09.031.
  75. Yamaura, S.-I. Hydrogen permeation of the Zr65Al7.5Ni10Cu12.5Pd5 alloy in three different microstructures / S.-I. Yamaura, S. Nakata, H. Kimura, A. Inoue // Journal of Membrane Science. - 2007. - V. 291. - I. 1-2. - P. 126-130. doi: 10.1016/j.memsci.2006.12.049.
  76. Paolone, A. 9 - Amorphous metal membranes / A. Paolone, D. Chandra // Current Trends and Future Developments on (Bio-) Membranes, Recent Advances in Metallic Membranes; ed. by A. Basile, F. Gallucci. - Amsterdam, Elsevier, 2020. - P. 209-233. doi: 10.1016/B978-0-12-818332-8.00009-0.
  77. Смирнов, Л.И. Диффузия и диффузионные явления в водородной подсистеме сплавов металл-водород / Л.И. Смирнов, В.А. Гольцов // Международный научный журнал "Альтернативная энергетика и экология". - 2014. - № 1 (141). - C. 111-137.
  78. Прижимов, А.С. Молекулярно-динамическое моделирование диффузии водорода в бикристалле палладия, содержащем малоугловую границу зерен / А.С. Прижимов, А.В. Болдырева // Конденсированные среды и межфазные границы. - 2016. - Т. 18. - № 3. - С. 402-407.
  79. McLennan, K.G. Deuterium occupation of tetrahedral sites in palladium / K.G. McLennan, E.M. Gray, J.F. Dobson // Physical Review B. - 2008. - V. 78. - P. 014104-1-014104-9. doi: 10.1103/PhysRevB.78.014104.
  80. Gissler, W. Theory of the quasielastic neutron scattering by hydrogen in bcc metals applying a random flight method / W. Gissler, H. Rother // Physica. - 1970. - V. 50. - I. 3. - P. 380-390. doi: 10.1016/0031-8914(70)90258-2.
  81. Kirchheim, R. Hydrogen in amorphous and nanocrystalline / R. Kirchheim, T. Mütschele, W. Kieninger et al. // Materials Science and Engineering. - 1988. - V. - 99. - I. 1-2. - P. 457-462. doi: 10.1016/0025-5416(88)90377-1.
  82. Лариков, Л.Н. Диффузия в аморфных металлических сплавах I / Л.Н. Лариков // Металлофизика. - 1993. - Т. 15. - № 4. - С. 54-78.
  83. Andrievski, R.A. Size effects in properties of nanomaterials / R.A. Andrievski, A.M. Glezer // Scripta materialia. - 2001. - V. 44. - I. 8-9. - P. 1621-1624. doi: 10.1016/S1359-6462(01)00786-2.
  84. Gapontsev, A.V. Hydrogen diffusion in disordered metals and alloys / A.V. Gapontsev, V.V. Kondrat'ev // Physics-Uspekhi. - 2003. - V. 46. - № 10. - P. 1077-1098. doi: 10.1070/pu2003v046n10abeh001660.
  85. Polukhin, V.A.Comparative analysis of the characteristics of amorphous, nanocrystalline, and crystalline membrane alloys / V.A. Polukhin, N.I. Sidorov, E.D. Kurbanova, R.M. Belyakova // Russian Metallurgy (Metally). - 2022. - V. 2022. - I. 8. - P. 797-817. doi: 10.1134/S0036029522080110.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».