High-mobility transparent conductive layers based on indium oxide doped with tungsten

Cover Page

Cite item

Full Text

Abstract

Increasing the conductivity of transparent conductive layers by increasing the mobility of free charge carriers is one of the most important tasks of transparent electronics, since its solution contributes not only to the reduction of heat losses in the layers, but also to the expansion of the spectrum of the radiation used towards the near infrared region. Currently, work in this area is being carried out in some routes, one of which is the search for new layer’s compositions that allow reducing the amount of impurity introduced while simultaneously increasing the efficiency of its ionization. In this paper, the influence of the oxygen content in the working gas and the deposition temperature on the morphology, microstructure, electrical, and optical characteristics of thin layers deposited by high-frequency magnetron sputtering of an ceramic target based on In2O3 with the addition of 1 wt.% WO3 was investigated. It was found that the maximum mobility (59 cm2/V٠s) and minimum specific resistance (7,8×10-4 Ohm٠cm) are achieved in layers synthesized at 300°C in the pure argon atmosphere. For comparison, layers based on a solid solution of indium and tin oxides, widely used in the formation of transparent electrodes in various optoelectronic applications, were obtained under identical conditions. It was shown that layers based on indium oxide doped with tungsten retain acceptable transparency in a wide spectral range, up to 2000 nm, and are, therefore, preferable for use in devices operating in the near infrared range, for example, in solar energy converters or night vision devices.

About the authors

Akhmed K. Akhmedov

Institute of Physics of the Dagestan Federal Research Center of RAS

Ph. D., Leading Researcher, Institute of Physics

Abil Sh. Asvarov

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Center «Kurchatov Institute»

Ph. D., Senior Researcher, Shubnikov Institute of Crystallography

Eldar K. Murliev

Institute of Physics of the Dagestan Federal Research Center of RAS

Junior Researcher, Institute of Physics

Zamir V. Shomakhov

Kabardino-Balkarian State University named after H.M. Berbekov

Email: shozamir@yandex.ru
Ph. D., Director of the Institute of artificial intelligence and digital technologies

References

  1. Шомахов, З.В. Улучшение сенсорных характеристик бинарных и тройных оксидных наносистем / З.В. Шомахов, С.С. Налимова, А.А. Рыбина и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2023. - Вып. 15. - С. 879-887. doi: 10.26456/pcascnn/2023.15.879.
  2. Налимова, С.С. Газочувствительные композитные наноструктуры на основе оксида цинка для детектирования паров органических растворителей / С.С. Налимова, З.В. Шомахов, К.В. Герасимова, К.Н. Пунегова, А.М. Гукетлов, Р.М. Калмыков // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 678-687. doi: 10.26456/pcascnn/2022.14.678.
  3. Шомахов, З.В. Наноструктуры станната цинка для газовых сенсоров с высоким быстродействием / З.В. Шомахов, С.С. Налимова, Б.З. Шурдумов, А.И. Максимов, В.А. Мошников // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 726-735. doi: 10.26456/pcascnn/2022.14.726.
  4. Minami, T. Transparent conducting oxide semiconductors for transparent electrodes / T. Minami // Semiconductors Science and Technology. - 2005. - V. 20. - № 4. - P. S35-S44. doi: 10.1088/0268-1242/20/4/004.
  5. Liu, H. Transparent conducting oxides for electrode applications in light emitting and absorbing devices / H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç // Superlattices and Microstructures. - 2010. - V. 48. - I. 5. - P. 458-484. doi: 10.1016/j.spmi.2010.08.011.
  6. Stadler, A. Transparent conducting oxides - an up-to-date overview / A. Stadler // Materials. - 2012. - V. 5. - I. 4. - P. 661-683. doi: 10.3390/ma5040661.
  7. Calnan, S. High mobility transparent conducting oxides for thin film solar cells / S. Calnan, A.N. Tiwari // Thin Solid Films. - 2010. - V. 518. - I. 7. - P. 1839-1849. doi: 10.1016/j.tsf.2009.09.044.
  8. Holman, Z.C. Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells // Z.C. Holman, M. Filipic, A. Descoeudres et al. // Journal of Applied Physics. - 2013. - V. 113. - I. 1 - P. 013107-1-013107-13. doi: 10.1063/1.4772975.
  9. Bikowski, A. Analytical model of electron transport in polycrystalline, degenerately doped ZnO films / A. Bikowski, K. Ellmer // Journal of Applied Physics. - 2014. - V. 116. - I. 14. - P. 143704-1-143704-11. doi: 10.1063/1.4896839.
  10. Hosono, H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application / H. Hosono // Journal of Non-Crystalline Solids. - 2003. - V. 352. - I. 9-20. - P. 851-858. doi: 10.1016/j.jnoncrysol.2006.01.073.
  11. Akhmedov, A.K. Transparent conductive indium zinc oxide films: temperature and oxygen dependences of the electrical and optical properties // A.K. Akhmedov, E.K. Murliev, A.S. Asvarov, A.E. Muslimov, V.M. Kanevsky // Coatings. - 2022. - V. 12. - I. 10. - Art. № 1583. - 12 p. doi: 10.3390/coatings12101583.
  12. Morales-Masis, M. Low-temperature high-mobility amorphous izo for silicon heterojunction solar cells / M. Morales-Masis, S.M. De Nicolas, J. Holovsky, S. De Wolf, C. Ballif // IEEE Journal of Photovoltaics. - 2015. - V. 5. - I. 5. - P. 1340-1347. doi: 10.1109/JPHOTOV.2015.2450993.
  13. Swallow, J.E.N. Resonant doping for high mobility transparent conductors: the case of Mo-doped In2O3 /j.E.N. Swallow, B.A.D. Williamson, S. Sathasivam, et al. // Materials Horizons. - 2020. - V. 7. - I. 1. - P. 236-243. doi: 10.1039/C9MH01014A.
  14. Koida, T. High-mobility transparent conductive Zr-doped In2O3 / T. Koida, M. Kondo // Applied Physics Letters. - 2006. - V. 89. - I. 8. - P. 082104-1-082104-3. doi: 10.1063/1.2337281.
  15. Hashimoto, R. High mobility titanium-doped In2O3 thin films prepared by sputtering/post-annealing technique / R. Hashimoto, Y. Abe, T. Nakada //Applied Physics Express. - 2008. - V. 1. - № 1. - P. 015002-1-015002-3. doi: 10.1143/APEX.1.015002.
  16. Warmsingh, C. High-mobility transparent conducting Mo-doped In2O3 thin films by pulsed laser deposition / C. Warmsingh, Y. Yoshida, D.W. Readey et al. // Journal of Applied Physics. - 2004. - V. 95. - I. 7. - P. 3831-3833. doi: 10.1063/1.1646468.
  17. Akhmedov, A.K. A multi-position drum-type assembly for simulaneos film deposition at different temperatures in a single sputter cicle - application to ITO thin films / A.K. Akhmedov, A. Sh. Asvarov, A.E. Muslimov, V.M. Kanevsky // Coatings. - 2020. - V. 10. - I. 11. - Art. № 1076. - 9 p. doi: 10.3390/coatings10111076.
  18. Txintxurreta, J. Indium tin oxide thin film deposition by magnetron sputtering at room temperature for the manufacturing of efficient transparent heaters /j. Txintxurreta, E. G-Berasategui, R. Ortiz et al. // Coatings. - 2021. - V. 11. - I. 1. - Art. № 92. - 14 p. doi: 10.3390/coatings11010092.
  19. Kim, J.H. Rapid thermal annealed WO3 - doped In2O3 films for transparent electrodes in organic photovoltaics /j.H. Kim, Y.-H. Shin, T.-Y. Seong, S.-I. Na, H.-K. Kim // Journal of Physics D: Applied Physics. - 2012. - V. 45. - № 39. - Art. № 395104. - 6 p. doi: 10.1088/0022-3727/45/39/395104.
  20. Newhouse, P.F. High electron mobility W-doped In2O3 thin films by pulsed laser deposition / P.F. Newhouse, C.-H. Park, D.A. Keszler, J. Tate, P.S. Nyholm // Applied Physics Letters. - 2005. - V. 87. - I. 11. - P. 112108-1-112108-3. doi: 10.1063/1.2048829.
  21. Sommer, N. Field emission at grain boundaries: modeling the conductivity in highly doped polycrystalline semiconductors / N. Sommer, J. Hüpkes, U. Rau // Physical Review Applied. - 2016. - V. 5. - I. 2. - P. 024009-1-024009-22. doi: 10.1103/PhysRevApplied.5.024009.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».