RESISTANCE TO BENDING OF 3D PRINTED PRODUCTS REINFORCED WITH CONTINUOUS CARBON FIBER

Capa

Citar

Texto integral

Resumo

The use of additive technologies in the production of parts for drone aircrafts has a number of advantages. Modern research confirms the need for mandatory verification of the strength properties of UAV components produced using additive manufacturing. This paper presents the results of tests for static bending of composite products obtained on Stereotech Fiber 530 V5 additive installations using three- and five-axis volumetric printing with continuous fiber reinforcement. To study the behavior of reinforced samples under the combined action of bending and interlaminar shear, static bending tests were performed in accordance with State Standard R 56810-2015. Seven groups of samples with different layer arrangements and reinforcement structures with PA6 thermoplastic in the form of a matrix material and reinforcement with Contifiber CPA filament based on Umatex UMT42S-3K filament were produced for testing. Different amounts of reinforcing filament were used for reinforcement. The samples were tested on a universal machine TRM-S 10 A1 with a device for testing three-point bending. The calculated values of the following strength indicators are given: tensile yield strength, interlaminar shear strength, flexural modulus of elasticity and interlaminar shear modulus. Diagrams of sample application of load during static bending tests are presented. It has been proved that the five-axis technology of additive manufacturing of reinforced products makes it possible to achieve an increase in the tensile strength under static bending from 1,5 to 2,5 times and a shear modulus from 2 to 4 times for products manufactured using the technology of five-axis printing with continuous fiber reinforcement of 10...20 % of the volume, compared with non-reinforced printed products and printed products reinforced by traditional three-axis technology.

Sobre autores

Ivan Torubarov

Volgograd State Technical University

Email: s_anakhov@yahoo.com
ORCID ID: 0000-0003-4958-7116

Aleksei Drobotov

Volgograd State Technical University

Email: s_anakhov@yahoo.com
ORCID ID: 0000-0003-1148-0495

Alexey Makarov

Volgograd State Technical University

Email: s_anakhov@yahoo.com
ORCID ID: 0000-0001-5617-8738

Mikhail Kukhtik

Volgograd State Technical University

Autor responsável pela correspondência
Email: s_anakhov@yahoo.com
ORCID ID: 0000-0002-7258-6624

Bibliografia

  1. Власов А.И., Гараев А.В., Захарова В.О., Селиванов К.В., Чернышов Д.Д. Методика профилизации беспилотных летательных аппаратов на основе аддитивных технологий // Надежность и качество сложных систем. 2023. № 4 (44). С. 95–110. doi: 10.21685/2307-4205-2023-4-9. EDN FCSGIV
  2. Григорьянц А.Г., Лутченко А.В. Современные проблемы развития аддитивных технологий в машиностроении // Наукоемкие технологии в машиностроении. 2022. № 8 (134). С. 27–30. doi: 10.30987/2223-4608-2022-8-27-30. EDN CAWHSG
  3. Торубаров И.С., Дроботов А.В., Гущин И.А., Вдовин Д.С., Плотников А.Л., Яковлев А.А. Аддитивное производство изделий с пространственным армированием непрерывным волокном // Frontier Materials & Technologies. 2022. № 2. 13 с. URL: https://www.vektornaukitech.ru/jour/article/view/429/401 (дата обращения: 10.05.2025). doi: 10.18323/2782-4039-2022-2-92-104. EDN PCDAZE
  4. Кулаков К.С., Крылов Ю.П., Красников В.И. Применение аддитивных технологий для прототипирования и изготовления составных частей БПЛА // Вопросы оборонной техники. Серия 16: Технические средства противодействия терроризму. 2024. № 5–6 (191–192). С. 130–136. doi: 10.53816/23061456_2024_5-6_130. EDN YFSPQS
  5. Навроцкий Р.А., Москвитин Г.В., Полежаев Э.Р. Исследование прочности элементов квадрокоптера, созданных по аддитивной технологии / В сборнике: XXXIV Международная инновационная конференция молодых ученых и студентов по современным проблемам машиноведения. Сборник трудов конференции. 2022. С. 319−325. EDN HRKJJY
  6. Dams B., Chen B., Kaya Y.F., Shepherd P., Kovac M., Ball R.J. The rise of aerial additive manufacturing in construction: a review of material advancements // Frontiers in Materials 2025. Vol. 11. № 1458752. doi: 10.3389/fmats.2024.1458752
  7. Терещенко Т.С., Орехов А.А., Рабинский Л.Н. Исследование статических и динамических физико-механических характеристик стали, изготовленной методом послойного лазерного спекания // Труды МАИ. 2025. № 140. EDN SHCSDM
  8. Тарнопольский Ю.М., Кинцис Т.Я. Методы статических испытаний армированных пластиков. М.: Химия. 1981. 271 с.
  9. Avdeev A.R., Shvets A.A., Guschin I.A., Torubarov I.S., Drobotov A.V., Makarov A.M., Plotnikov A.L., Serdobintsev Y.P. Strength Increasing Additive Manufacturing Fused Filament Fabrication Technology, Based on Spiral Toolpath Material Deposition // Machines. 2019. Vol. 7, Issue 3. 18 p. URL: https://www.mdpi.com/2075-1702/7/3/57. doi: 10.3390/machines7030057
  10. Багмутов В.П., Захаров И.Н. Сопротивление материалов. Конспект лекций, тетрадь первая: учеб. пособие / ВолгГТУ. Волгоград, 2015. 91 с.
  11. Савкин А.Н., Водопьянов В.И., Кондратьев О.В., Седов А.А. Основы расчетов на прочность и жесткость типовых элементов конструкций: учеб.-метод. пособие / ВолгГТУ. Волгоград, 2019. 252 с.
  12. Михеев П.В., Муранов А.Н., Гусев С.А. Экспериментальное определение модуля межслоевого сдвига слоистого углепластика // Конструкции из композиционных материалов. 2015. № 4 (140). С. 46–50. EDN VOKSXD

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».